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Foreword

The state of computer technology can be measured by inspecting the contents of
this year’s proceedings for the 1993 Goddard Conference on Space Applications of
Artificial Intelligence. Approaches are prevalent that only a few years ago would
have been impossible due to constraints on memory and speed of computing. As a
result of the increased rates of processing, an intensive research effort is now
evident in interpreting and managing the data that are being produced. Parallel
computing, distributed computing, object-oriented methodologies, constraint
satisfaction, and wavelets show up to various extents in some of the papers, and it
will not be surprising in the next few years to see an infusion of papers involving
applications with these topics. Undoubiedly, future conferences will cover the role
of multimedia in presenting information, improved methods for classifying and
detecting changes in images, innovative uses of networked computers, and
eventually applications of optical computing,.

We call your attention to the Call for Papers for the 1994 Goddard Conference on
Space Applications of Artificial Intelligence, which can be found in the back of
these proceedings. We look forward to your participation.

We would like to thank the members of the conference planning committee, the
reviewers, the authors, presenters, and invited speakers for investing their valuable
time into making this a successful endeavor.

Bob Cromp

Mike Moore

Co-chairs

1993 Goddard Conference on

Space Applications of Artificial Intelligence.
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USING AVEXPERT SYSTEM TECHNOLOGY TO AUTOMATE PLANNING
AND REPLANNING FOR THE HST SERVICING MISSIONS

L. Bogovich, J. Johnson, A, Tuchman, D. McLean, B. Page,
A. Kispert, C. Burkhardt and R. Littlefield
AlliedSignal Technical Services Corp. (formerly Bendix Field Engineering Corp.)
Seabrook, MD 20706

W. Potter
Goddard Space Flight Center
Greenbelt, MD 20779

ABSTRACT

This paper describes a knowledge-based
system that has been developed to automate
planning and scheduling for the Hubble
Space Telescope (HST) Servicing Missions.
This new system is the Servicing Mission
Planning and Replanning Tool (SM/PART).
SM/PART has been delivered to the HST
Flight Operations Team (FOT) at Goddard
Space Flight Center (GSFC) where it is being
used to build integrated timelines and
command plans to control the activities of the
HST, Shuttle, Crew and ground systems for
the next HST Servicing Mission. SM/PART
reuses and extends Al/expert system
technology from Interactive Experimenter
Planning System (IEPS) systems to build or
rebuild timelines and command plans more
rapidly than was possible for previous
missions where they were built manually.
This capability provides an important safety
factor for the HST, Shuttle and Crew in case
unexpected events occur during the mission.

Keywords: HST Servicing Mission, AI,
Expert System, Automation.

INTRODUCTION
The IEPS Group

The IEPS group at Bendix has been
building spacecraft ground support systems
with embedded Al/expert system capabilities
since 1985. The IEPS group in conjunction
with the Spacecraft Control Programs Branch
(Code 514) has built several powerful
Planning and scheduling systems using the C
language and conventional hardware (PCs
and UNIX-based workstations) rather than
traditional . Al languages and specialized Al

3

machines. It has been possible to quickly
and efficiently change or enhance these
knowledge-based systems to adjust to new
scheduling conditions.

The IEPS Development Approach

The IEPS systems have been developed
with an evolutionary prototyping approach.
In contrast to the more traditional waterfall
approach, the evolutionary prototyping
approach starts with the assumption that a
software application cannot be totally
specified at the start of the development
process. The evolutionary prototyping
approach uses the basic cyclical paradigm:
gather requirements, create/evolve a
prototype, evaluate the prototype, and
improve the prototype. In this approach,
developing a system is considered to be a
discovery process which results in
continuously evolving specifications.

In contrast to rapid prototyping
approaches, the evolutionary prototyping
approach emphasizes the evolution and reuse
of generic software tools. By more
effectively reusing generic software tools
developed in earlier systems and prototypes,
the evolutionary prototyping approach
reduces the overall system development time.

In the IEPS development approach,
several prototypes are delivered to the
customer for evaluation before the final
system is delivered. This approach allows
the customer to provide feedback about the
prototypes and results in improved
functionality for the final system with
decreased risk for the customer. The final
system is delivered only after the customer is
satisfied with the system's performance.

PRE@GEDING PAGE BLANK NOT FILMED
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The ERBS System

In 1987, the ERBS-TDRSS Contact
Planning System (McLean et al, [1]) was
delivered to the Earth Radiation Budget
Satellite (ERBS) Flight Operations Team
(FOT) at GSFC. This system is written in C
and is implemented on an IBM PC/AT. The
system automates the process of generating
requests for communications support from
the NASA Tracking and Data Relay Satellite
System (TDRSS), and it was the first expert
system at GSFC to provide ground-system
support for an on-going mission.

The ERBS system use€s scheduling
environment data from the Flight Dynamics
Facility at GSFC along with strategic
planning knowledge from a Knowledge Base
(KB) to build a 1-week schedule of TDRSS
requests. The system uses alternative
scheduling strategies and traditional conflict
avoidance techniques to perform conflict
resolution (McLean et al, [2]).

The ERBS system uses the Planning and
Resource Reasoning (PARR) shell to build
timelines in batch and interactive scheduling
modes. Using PARR, a schedule of requests
can be built in a few minutes, compared with
several hours by the manual method. After a
schedule of requests is built in the batch
mode, a graphical timeline can be displayed.
Users can edit the timeline in an interactive
mode, while obtaining "expert" help from
PARR.

The ERBS system has been used steadily
since its delivery. In addition, the system has
been modified or enhanced several times to
meet changing mission requirements. These
changes were easily made because of the
knowledge-based features of the system
(McLean [3]).

Explorer Platform Planning System

In 1991, the Explorer Platform Planning
System (EPPS) was delivered to the Extreme
Ultra-Violet Explorer (EUVE) FOT at GSFC
(McLean et al, [4]). EPPS uses Al/expert
system technology from the ERBS system.

In addition, EPPS provides several
enhancements to the ERBS system. First,
EPPS runs on a UNIX-based workstation
with X-Windows/Open-Look. Second,
EPPS schedules several types of EUVE
mission support activities in addition to
TDRSS service requests. Third, EPPS
provides knowledge acquisition tools so that
EUVE FOT can modify the strategies and
constraints in the KB and try "what-if"
scenarios to adapt EPPS to handle new
scheduling situations. Finally, EPPS uses an
Ethernet to electronically receive resource
data from the Flight Dynamics Facility at
GSFC, TDRSS schedule data from the
Network Control Center at GSFC, and
planning data from EUVE Investigators at the
University of California at Berkeley. This
Ethernet is also used to send TDRSS
schedule data to the Network Control Center
and sequences of EUVE command
procedures to the Command Management
Facility at GSFC.

The IEPS Software Toolkit

As IEPS systems were developed, many
generic tools for building new IEPS systems
were also developed. Eventually, these
generic tools were formally organized into a
software toolkit called the IEPS Software
Toolkit (NASA-GSFC, [5]). This toolkit
contains several types of system-building
tools: data formatting and report generation
tools, user interface tools, database tools,
strategic planning tools and tactical planning
tools.

To build a new system using the generic
tools in the IEPS Software Toolkit, a
software engineer first examines the basic
requirements for a new system and identifies
the IEPS tools that can be applied to the new
system. Next, individual IEPS tools are
configured to handle specific tasks, and script
files are created to link the individual tools
into a system that can be tested. Finally, the
unified system is tested and iteratively refined
until it meets all of the initial, plus
discovered, requirements. Recently, IEPS
tools have been used to build another
planning and scheduling system, SM/PART.



SM/PART OVERVIEW

HST Servicing Missions are Shuttle
missions that are expected to occur about
every three years to upgrade or replace failed
HST components and to help the HST
function to its fullest extent over its 15-year
mission lifetime. SM/PART is a planning
and scheduling expert system that automates
the complex process of building or rebuilding
integrated timelines and command plans for
the HST Servicing Missions (Johnson, et al.
[6]). Integrated timelines and command
plans are used to coordinate the activities of
the HST, Orbiter, Crew and ground systems
during the servicing missions.

SM/PART is currently being used to
prepare for the first HST Servicing Mission
that is scheduled for launch in 1993. It is
expected that SM/PART will also be used to
support all the other future HST Servicing
Missions. For each servicing mission, HST
Servicing Mission engineers must provide
SM/PART with detailed planning and
scheduling data. The planning and
scheduling data that is required includes
scheduling environment (resource) data,
event definitions, sequence definitions and
command procedures. SM/PART provides
powerful data and knowledge acquisition
tools for users to enter this planning and
scheduling data. :

Before a timeline or command plan is
built, a defaults file and a Data Set
Configuration (DSC) file must be created.
The defaults file provides basic display
information for a timeline and command plan
such as the mission launch time, the timeline
start time and stop time, timeline and
command plan header information, and
colors to be used on the displays. The DSC
file provides the names of the defaults file,
Merged Resources file, Event Definition KB,
Sequence Definition KB and Procedure
Definition KB that are to be used for a
particular timeline and command plan.

After all of the required files and KBs

have been constructed, SM/PART uses

PARR to build a timeline in a batch
(automatic) scheduling mode. In this
process, PARR places each HST event on a
timeline in accordance with pre-defined
scheduling strategies and constraints in the
Event Definition KB. The data and
knowledge components that make up a
timeline are shown schematically in Figure 1.

Timeline

\ /

-qE €sources vents

CHVITY omment

_rrocedured /
| —Erocedyred” )

ProceduresZ 1
.‘“' ‘ dures

Figure 1. Timeline Components

The timeline that has been built in the
batch mode can be graphically displayed with
its scheduling environment data (resources)
and scheduled HST events (activities and
comments).

A section of an integrated timeline is
shown in Figure 2.

Because the data objects displayed on an
integrated timeline are actively connected to
the Event Definition KB (via PARR), users
are able to edit a timeline during an interactive
scheduling session while they obtain "expert”
scheduling help from PARR. For example,
as an event is changed, the definition of the
event in the Event Definition KB is
automatically updated. If an event is dragged
by mouse to a place where a scheduling
constraint is violated, a prominent
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"WIOLATION" message is displayed in the their consoles during the mission.

Event Definition KB and on the timeline.
SM/PART was built in an eight month

After an integrated timeline has been period using an evolutionary prototyping
built, sequence definitions and command approach that reused Al tools from earlier
procedures can be combined with the IEPS systems. Two prototypes were
scheduled timeline event data to automatically delivered to HST Servicing Mission
generate a command plan. Command plans engineers for their evaluation before the final

are used by Servicing Mission personnel at system was delivered.
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In addition to reusing IEPS tools,
SM/PART provides several new and
enhanced features. For example, SM/PART
is the first IEPS system that uses Motif
software for its multitude of windows and
pop-up/pull-down menus. Also, SM/PART
features enhanced data and knowledge
acquisition tools, as described below.

ENVIRONMENT DATA
ACQUISITION

One type of planning and scheduling
information that must be acquired for
SM/PART to function is scheduling
environment, or resource, data. Scheduling
environment data is part of the strategic
planning information (data/knowledge) that is
required by PARR to automatically build
timelines and command plans during the
tactical planning process.

Several types of scheduling environment
data displayed on an integrated timeline are
acquired electronically from external sources.
For example, ORBIT#, DAY/NIGHT,
SOUTH ATLANTIC ANOMALY, and
TDRS data are received electronically from
the Flight Dynamics Facility at GSFC via the
HST Application Processor. This data is not
generated or modified by HST Servicing
Mission personnel, but just reformatted by
SM/PART.

Other types of scheduling environment
data on an integrated timeline are acquired
directly from HST Servicing Mission
personnel. Examples of this data include:
HST ATTITUDE, ORBITER ATTITUDE,
TELEMETRY FORMAT, CREW
SCHEDULES, and GROUND SYSTEM
ACTIVITIES. For acquiring this data,
SM/PART provides several types of Motif-
style data-entry forms.

Eventually, the various types of external
and user-entered scheduling environment data
must be merged into a single data file, the
Merged Resources file. Later, data from this
file is used by PARR, along with strategic
planning knowledge, to automatically place
HST events on a timeline.

KNOWLEDGE ACQUISITION

Another type of planning and scheduling
information that must be acquired for
SM/PART is strategic planning knowledge.
For SM/PART, strategic planning knowledge
includes activity event definitions, comment
event definitions, sequence definitions and
command procedures. This knowledge is
acquired from HST personnel and stored in
various KBs. HST activity event definitions
and comment event definitions are stored in
the Event Definition KB, sequence
definitions are stored in a Sequence
Definition KB, and command procedures are
stored in a Procedure Definition KB.

For acquiring strategic planning
knowledge, SM/PART provides new
knowledge acquisition tools. For example,
to acquire complex scheduling strategies and
constraints, event definition forms with
linked push-button or pop-up menus and
various options are provided. An Activity
Event Definition Form, for AD# B508, is
shown in Figure 3. This event is also seen
scheduled on the timeline shown by Figure 2.

For acquiring the "start event" attribute of
an event, linked push-button and/or pop-up
menus are provided to allow the user to
specify that an event start when a second
event or resource starts or stops. Also, the
user may specify a plus or minus offset for
the "event start” relative to the start or stop
time of the second event or resource.

For acquiring "constraints” for events,
linked push-button and/or pop-up menus are
provided to allow the user to specify that an
event occur only when a second specified
event or resource occurs. Alternatively, an
event can be specified so that it avoids a
second event or resource. In addition, the
user can enter plus or minus offset times for
the various options selected.

SM/PART also allows users to specify

alternative scheduling strategies that can be

tried when there is a scheduling conflict. One
type of alternative strategy has SM/PART
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Figure 3. SM/PART Activity Event Definition Form

schedule an event just before or just after a
conflicting event. Another type of alternative
strategy has SM/PART schedule an event
during the resource window that occurs just
prior to or just after the resource window
where the conflict occurs.

Sequence Definition Forms are provided
for acquiring sequence information such as
sequence number, sequence title, the activity
events included in each sequence, and special
ordering instructions for the activity events

within each sequence.

Procedure Definition Forms are provided
for acquiring detailed command procedures
associated with HST activity events.
Procedure Definition Forms allow users to
enter information describing the procedures
to be performed by operations personnel for
each activity event, the effects of each
procedure, the duration of each step/substep,
and the actions expected in space and
throughout the ground system.



BUILDING A TIMELINE
Batch Scheduling

After scheduling environment data and
strategic planning knowledge have been
acquired, SM/PART is able to build a
timeline in the batch (automatic) scheduling
mode. This process is referred to as tactical
planning. To build a timeline in the batch
mode, PARR reads scheduling environment
data from the Merged Resources file and
strategic planning knowledge from the Event
Definition KB, dynamically allocates an
internal frame structure to represent each
HST event, and uses the information to place
events on the timeline. If resources are not
available or if constraints are violated, then
alternative scheduling strategies are used to
try to resolve the scheduling conflicts.

If there are no scheduling conflicts, the
event is put on the timeline and the Event
Definition KB is updated. If there is a
scheduling conflict that cannot be resolved
then a prominent "VIOLATION" message is
written in the Event Definition KB.

Interactive Scheduling

A timeline that is built in the batch
scheduling mode can be displayed graphically
on the terminal screen with its scheduled
events. Alternatively, a new timeline with
scheduling environment data, but with no
scheduled events, can be displayed
graphically on the terminal screen.

In the interactive scheduling mode, the
user can browse the timeline that is displayed
and interactively add or change timeline
events while receiving expert scheduling
assistance from PARR. This expert
scheduling assistance is possible because the
timeline data objects are actively linked via
PARR to the Merged Resource file and Event
Definition KB.

As an example of editing a timeline in the
interactive scheduling mode, a user may click
on an HST activity event with the mouse and
"drag" it toa new, valid position. In this

case, the Event Definition KB is
automatically updated. However, if the
activity is dragged to a place where a
scheduling constraint is violated, then a pop-
up window with a "VIOLATION" message
that the user must respond to is displayed on
the screen.

BUILDING A COMMAND PLAN

.. After a timeline has been built, a detailed
command plan corresponding to the timeline
can be automatically built and displayed on
the terminal.  Building a command plan
involves retrieving and combining scheduled
timeline event information with sequence
definitions and command procedures.
Sequence definitions specify groups of HST
activities while command procedures specify
the detailed steps required to complete each
scheduled HST event.

A command plan that is displayed on the
terminal can be converted to an identical
graphical command plan print. Command
plan prints are used by HST Servicing
Mission engineers at their control consoles
during the HST Servicing Missions.

SM/PART is also able to automatically
synchronize a command plan with a timeline.
Synchronizing a command plan with a
timeline is required whenever changes are
made to either the command plan or its
corresponding timeline.

REPLANNING

An important capability of SM/PART is
to quickly rebuild a timeline and command
plan. This capability is particularly important
if unexpected events or changes in the
scheduling environment occur during a
mission. In critical situations, this capability
provides an important safety factor for the
HST, Shuttle and Crew. Initial results from
the HST Flight Operations Team indicate that
SM/PART is able to reduce the time to
rebuild a timeline and command by a factor of
ten compared with the former manual method
using a Macintosh (Potter et al, [7]).
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CONCLUSIONS

SM/PART has successfully reused and
extended IEPS Al/expert system technology
to build SM/PART and automate the complex
task of building timelines and command plans
for HST Servicing Missions. To automate
this task, SM/PART initially provides
capabilities for HST Servicing Mission
personnel to acquire scheduling environment
data and strategic planning knowledge.
Next, SM/PART is able to use the acquired
scheduling environment data and strategic
planning knowledge to automatically place
HST events on a timeline. During interactive
scheduling sessions, SM/PART is able to
provide "expert" scheduling assistance to
users. Finally, SM/PART is able to combine
timeline event data with sequence definitions
and detailed command procedures to
autornatically generate command plans.

An evolutionary prototyping approach
which emphasizes reusing and enhancing Al
tools was successfully used to build
SM/PART in an eight month period.
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ABSTRACT

Autonomous robot systems are being
proposed for a variety of missions including
the Mars rover/sample return mission. Prior
to any other mission objectives being met,
an autonomous robot must be able to
determine its own location. This will be
especially challenging because location
sensors like GPS, which are available on
Earth, will not be useful, nor will INS
sensors because their drift is too large.
Another approach to self-localization is
required.

In this paper, we describe a novel approach
to localization by applying a problem-
solving methodology. The term “problem-
solving” implies a computational technique
based on logical representational and control
steps. In this research, these steps are
derived from observing experts solving
localization problems. The objective is not
specifically to simulate human expertise but
rather to apply its techniques where
appropriate for computational systems. In
doing this, we describe a model for solving
the problem (Ref. 1) and a system built on
that model, called localization control and
logic expert (LOCALE), which is a demon-
stration of concept for the approach and the
model. The results of this work represent the
first successful solution to high-level control
aspects of the localization problem.

Keywords: Knowledge-based control,
robotics

INTRODUCTION

Interest has been growing in the

development of autonomous mobile robot
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systems. For example, autonomous mobile
robots have been proposed for the Mars
rover/sample return mission. In addition,
applications for such systems are being
proposed for military, industrial, and
scientific endeavors. Missions include
advanced reconnaissance, battle
damage/contamination assessment, and
exploration for cartographic, geographic,
and geologic concerns. In each of these
missions, an autonomous mobile robotic
agent would be used in place of a human
agent for cost savings and safety reasons. In
order for a robotic agent to perform the
above missions, it must be able to perform
navigation tasks. These tasks generally
include locating oneself on a map,
determining a route to a specified location,
performing some operation at that location,
and continuing on to other locations or
returning. The first of these tasks, locating
oneself on a map, is the most critical
because all the other functions rely on the
agent having and maintaining accurate
knowledge of self-location. The
environments for these tasks are usually
large outdoor spaces where environmental
features are much larger than the robot, and
the entire environment cannot be observed
all at one time from the robot's sensors.
Unambiguous, human-made landmarks and
other location tools are not available.

There are several systems used by aircraft
and other navigational systems to perform
localization. They include global positioning
systems (GPS) and inertial navigation
systems (INS). GPSs use radio signal
returns from orbiting satellites to determine
an agent's current position on the Earth. The
resolution of these systems is quite good and
would preclude the need to solve the
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localization problem for Earth-based
scenarios. However, localization is a major
problem for space exploration. No GPS
satellites exist for Mars. It will not be cost-
efficient to put a GPS system in place for
this relatively low usage, so in the near term,
autonomous systems on Mars will need the
capability to localize. While INSs also
provide localization information, they
unfortunately experience drift on the order
of feet per hour over the long run and meters
per second in the short run, making these
systems inadequate for localization in
ground-based robot systems.

THE LOCALIZATION PROBLEM
Problem Description

The objective of the localization problem is
specifying the current viewpoint and
viewing direction in the map coordinate
system. Knowledge of self-location 1is
essential to any agent that will interact with
an external environment. If self-location is
defined in terms of the map coordinate
system, then knowledge of it makes all other
map data accessible. Given the constraints
of current technology (e.g., videocameras,
digital maps), self-localization becomes a
translation from one input domain into
another. For our research, two data sources
were explored: visual information and map
information.

At an abstract level, localization can be
modeled as three interacting processes (see
Figure 1). Two of the processes are
perceptual: they identify the pertinent
information from the view of the image and
from the map. The inputs from a
videocamera are a series of pixels, each
defining a grey level or color. These need to
be preprocessed to determine meaningful
symbolic labels like hill, valley, saddle, etc.
The inputs from a digital map are elevation
points in a grid pattern over the map area.
These, too, need to be preprocessed into
meaningful symbolic labels. Ideally, both of
these processes are able to operate in both
data-driven and hypothesis-driven modes. In
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the data-driven mode, they reason bottom-
up from the input data, gleaning all they can
from new data and integrating it with old
data. In the hypothesis-driven mode, they
reason top-down and search for specified
data of a certain type or in a specific
location. The third process determines the
correspondence between the features in the
map and the features in the view.
Correspondence is determined by matching
features from the map and the view. This
matching should be able to occur in both
directions: map to view and view to map.
This capitalizes on the results of data-driven
reasoning in each domain and uses those
results to drive hypothesis-driven reasoning
in the other. The search for matches should
be guided by knowledge of the environment
and heuristics that reduce the computational
complexity of the search. The
correspondence process mediates between
the two perceptual processes. For example,
it translates between the map's plan-view
(down-looking) representation, where
elements are north or west of each other,
and the image's lateral (side-looking) view
where elements are left and right or in front
of each other.

Localization Knowledge
Correspondence Matching
Feat ure Feature
Extraction Extraction Perception

Figure 1. Top-level Model of the Locallzation
Process (The perception process extracts
features from the map and the view of the image.
Matching determines the correspondence
between the view and map features. Knowledge
is used to determine the localization of the agent
on the map.)



Problem Approach

Formally, the localization problem is
matching image features to map features and
using that information to hypothesize a
current viewpoint. The goal of localization
is to determine an estimate of the location
where the image was shot and the direction
from which it was shot (i.e., to derive a
viewpoint hypothesis). In the case where
one unambiguous estimate cannot be
derived, a list of prioritized viewpoint
hypotheses is generated. These viewpoint
hypotheses constitute the best estimates
derived along with rank-order preference for
them.

Because the objective of this research was to
develop a model to provide high-level
control for localization, it determined
strategies for effectively and efficiently
generating and evaluating viewpoint
hypotheses.

The rationale for using feature-matching
techniques is that there is simply too much
data to deal with individually. This is
essentially an argument of granularity. Both
raw map and image data are digitized for
input to a computational system; however,
the granularity of this digitization is
extremely small in order to provide the
computer with as much data as possible. The
prospect of matching each picture element,
or pixel, in the visual sensor input data to a
point on the map is daunting. The approach
of combining individual map and sensor
data elements into features reduces the
search required for matching. In this
approach, many data elements are combined
into geographic features and are dealt with
on the level of hills, valleys, gaps, and so
forth. Humans performing this task use data
elements on the level of geographic features.
It is therefore a natural representation level
to communicate the computer system's
abilities to its human builders and observers.

Demonstration Constraints
For this research, test cases with specific

map and sensor data have been explored. In
these test cases there are two available

15

inputs: a topographic map and a single video
sensor image. These inputs are assumed to
be processed by a low-level processing
system, which is not part of this research.
Figure 2 shows an example view. Figure 3
shows the area of the topographic map used
in this problem.

The rationale for limiting the inputs is that
they are a minimal set of inputs. If a system
can be built that works effectively with this
constrained environment, it can likely be
expanded to work in domains with richer

~ inputs. The limit on the visual sensor to one

input frame is quite severe. This means that
no stereo or image-to-image information is
available. The limits of a normal camera are
also quite tight—the angle of view is
limited. So, while a panoramic or preferably
a full-circle view would give more data, we
chose to explore what can be gained from
the standard limited camera view. In
addition to limiting the viewing angle from
side to side, the standard camera also limits
the viewing angle from top to bottom. So
the data about the location on which the
camera is standing, which could be quite
useful, is unavailable. The main limitations
on the map data are the resolution and the
fact that it is limited to elevation data. Our
goal was to focus on large outdoor
environments, so we eliminated human-
made features from our scenarios and picked
areas where their effect was minimal. Thus,
the elevation data in the digital map is
essential and was readily available.

This work assumes that a low-level image
and map processing system processes the
raw image signal and map elevation data
and sends processed information to
LOCALE. The result of this processing is
the location and classification of features in
the map and image. Map features are peaks,
valleys, ridges, etc. Image features are
peaks, valleys, gaps, ridges, saddles, and
inclines. Figure 4 shows the processed map

" information. The image and map processing

system was simulated for this work because
computational systems are only just being
developed to this effect (Refs. 2 and 3).
LOCALE can query the simulated image
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Figure 2. Example Videocamera View (In this example of a videocamera view, the most prominent features
are the large valley in the middle and the two protrusions on either side of it in the front. Other valleys and peaks

also appear in the view.)

and map processing system for specific data
as required. The simulated image and map
processing system replies by describing the
map and image features (e.g., hills, valleys,
etc.) at varying levels of detail.

Finally, the localization problem is actually
a class of problems that fall on a spectrum
determined by the amount of a priori
information available to the system. Figure
5 shows the localization spectrum. Near one
end of the spectrum are update problems
where a lot of a priori information exists. In
this region the typical problem is verifying
one's location after a short move from a
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known location. Update problems are easier
than dropoff problems because the agent has
an indication of current location in an
update problem. The agent needs to test
actual sensor data against expected sensor
data based on estimated location. In the
dropoff scenario the agent must determine
the estimated location in addition to testing
its validity. In dropoff problems the agent
has no a priori knowledge of where it is on
the map. The research we have done
addresses the dropoff problem and works
with no a priori knowledge, not even a
compass heading.



Figure 3. Example Topographic Map of Teton Reglon
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Figure 4. Processed Information from the Map
(The processed map information is represented in a
semantic network with proximity links between
adjoining features.)
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Figure 5. The Localization Spectrum
{Problems with no a priori knowledge are dropoft
problems, Problems with more a priori knowledge
are update problems. This research focuses on

dropoff problems.})
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RELATED WORK

Traditional computational approaches to the
localization problem and related problems
have developed in several areas: pattern
recognition, control and representation
systems, and computer vision research.

Classic pattern recognition approaches to
the localization problem have differed from
this work in two aspects: their reliance on
low-level matching and their reliance on a
priori knowledge.

Past work has explored low-level signal
matching techniques as opposed to frame-
based approaches for correlating images
with maps. There are two signal domains in
which this work can be pursued: the image
domain and the map domain. More work has
been done in the image domain. Ernst and
Flinchbaugh (Ref. 4) matched estimated
features with sensed features and required a
known sensor location within a small
neighborhood. Stein and Medioni (Ref. 5)
explored localization using panoramic
horizons as the features. This approach
requires extensive pre-computation of
indexed synthetic horizon maps and then
matches the actual horizon to these. This
approach also requires a full 360° view. As
for the map domain, Lavin's work (Ref. 6)
centered around determining what depth
map could cause a two-dimensional (2-D)
projection. It requires multiframe moving
images.

The HILARE project (Ref. 7) sought to
develop an experimental testbed on which to
study general robotics, and robot perception
and planning. The position referencing
subsystem on HILARE used infrared
triangulation operating in areas where fixed
beacons were installed. This allowed for
position determination either relative to
objects and specific environment patterns or
in a constructed frame of reference.

Beyond the low-level matching, some
attention has been paid to control for low-
level image processing. Arkin et al.(Ref. 8)
explored an integrated system for the
interpretation of visual data in a mobile
robot testbed. This work essentially
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explored the low-level processing tasks and
relied heavily on a priori knowledge of
expected location. In related work,
Fennema, et al. (Refs. 9, 10, and 11) use a
hierarchy of representation and control
techniques to solve the planning concerns
for control uncertainty but do not examine it
in light of specific localization problems. In
addition, some research has explored
advanced representational structures.
Binford (Ref. 12) and Kriegman, et al. (Ref.
13) explore a hierarchical representation
model for robot navigation focusing on
interior environments. Smith and Strat (Ref.
14) begin to explore a frame hierarchy and a
community of independent processes for
solving outdoor problems with human-made
landmark recognition. Andress and Kak
(Ref. 15) explore knowledge-based control
for accumulating evidence and controlling
reasoning in a hierarchical spatial reasoning
system with a computer program called
production system environment for
integrating knowledge with images
(PSEIKI) that reasons about interior
environments.

Traditionally, vision system approaches
have only examined the update problem.
Update implies a priori knowledge, an
accurate estimate of current location.
Examples of such systems include the work
by Davis, et al. (Ref. 16) on DARPA's
Autonomous Land Vehicle (ALV) program,
Carnegie-Mellon University's Navlab
project [17], and Lawton, Levitt, et al. (Refs.
18, 19, 20, 21, 22 and 23).

Thompson, et al. (Refs. 24 and 25) define
the aspects of the localization problem and
specifically the dropoff problem in large-
scale environments.

The research described here uses a different
approach where abstract representations of
both the map and image were generated by
extracting high-level features from each
domain. The correspondence between these
features is then computed in this higher-
level abstract domain.

The work of Thompson, Pick, et al. (Ref.
25, 26 and 27) is closely related to this
research. Here, protocol analyses of experts



indicated that humans solving localization
problems benefit from the following
strategies:

Concentrate on the view first.
Landmark features should be
organized into configurations.
Information about terrain at the
viewpoint is important.

Multiple hypotheses need to be
generated and examined.
Hypotheses should be compared
using a disconfirmation strategy.
The ability to move to alternate
viewpoints is important.

A U

From work with experts, we made the
following general observations:

* Grouping things into
configurations is important—
These configurations are linear
and contain relationships among
the constituent entities. This
serves to constrain the search
because the more complex a
feature is the more specific the
search can be. And,
configurations are more complex
than the features that compose
them.

*  Working at various levels is
important—At times it is useful
to take an overall view of the
area or the map. At other times it
is important to focus on
increasingly minute details of an
area. It is important to be able to
swap back and forth between
these levels, too.

* Heuristic generation and
testing of hypotheses is
important—For example,
humans use the fact that a great
deal of information is required to
fully accept a hypothesis, while
very little is required to reject
one.

* Data-driven and hypothesis-
driven reasoning is used—
Early on, data about the
viewpoint are gathered and
interrogated—this is data-driven
reasoning. Once enough data are
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present to construct sufficiently
interesting hypotheses, they can
drive the reasoning.

THE MODEL

From the discussion on human experts in the
previous section, two principles stand out:

* Grouping objects into composite
entities focuses attention and
reduces search.

» Representing data and working at
multiple levels allows
opportunistic and agenda-driven
reasoning to work cooperatively.

Grouping Objects

From a purely mathematical perspective,
grouping objects into composites for
matching has clear significance. If one is
trying to match two sets of features (e.g.,
trying to match image features to map
features) and there are five features in the
first set and 40 in the second, then the
number of possible matches is 90,536,361.

This calculation is

min(m,n)
nl _m!
=0 j! (n-j)! (m-j)!

where m and n are the cardinality of the sets
(in this case 5 and 40). If, however, the first
set is actually grouped into two groups: one
of three and one of two, and the second set
is divided into eight groups of three and
some singletons, then the number of
possible matches between the groups of
three in each set is only nine. The group of
three from the first set could match any of
the eight, or none at all. So, from a
mathematical perspective, grouping clearly
assists matching. In computational terms,
grouping objects into composites and then
working with the composites reduces the
search space of the problem.

Grouping is observed in expert performance
in the localization problem. Successful
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experts group individual features into
configurations. The configurations observed
and used are linear and generally radial from
the subject. The expert realizes that there are
fewer groupings of hill-valley-hill in a
straight line on the map than there are
individual hills or valleys. So the expert
chooses to reason at the configuration rather
than the feature level.

As for the model, the goal is to capture the
groupings that facilitate the heuristic
solution to the localization problem.
Practically, this means an enumeration of
the terms experts use in problems of this
type and a thorough understanding of the
interrelationships of these terms. This
understanding leads to illumination of
constraints and other rules of thumb to focus
matching and other reasoning processes for
localization.

Multiple Levels of Representation and
Reasoning

The second major principle of the model is
that working at multiple levels provides the
ability for opportunistic- and agenda-driven
reasoning to work cooperatively. Data
required for the model fall across a spectrum
of levels of complexity. The levels of data
required in the model reflect the derivative
nature of the data. Low-level data are the
raw inputs from the simulated image and
map processing system. They consist of
brief statements of fact, for example, that a
certain hill is at a certain location. Higher-
level data, including configurations, possible
configuration matches, and viewpoint
hypotheses derive from them.

Data at different levels are very different.
Raw data are immutable facts. Derived data
are less strong. It is useful to distinguish
permanent and persistent data in this
context. As the system approaches a given
localization problem in a given geographic
area, that is one problem-solving episode;
there are some data that will be permanent
to this problem-solving episode, and some
that will not. The permanent data are facts
like, “There is a hill at coordinate 335,432.”
Less permanent data (we use the term
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persistent data) may fall in and out of favor.
Persistent data is a specialized example of a
requirement for nonmonotonic reasoning.
Hypotheses are examples of persistent data.
At one point in the episode a hypothesis
may look very promising, it may lose
credibility, then gain it again as more data
are gathered, but it is not truly temporary
because even when it appears unlikely, the
mere fact that a hypotheses has been
explored to a certain degree of detail is
important and should be preserved and not
discarded as one would be tempted to do
with false information. Like systems
requiring full nonmonotonic reasoning,
persistent data requires that the logical
dependencies of conclusions are maintained;
however, this is not a case where data will
later be retracted, per se, as in a full non-
monotonic system, In contrast, persistent
data will not decrease the amount of
knowledge held by a system (it will always
grow), but this knowledge will simply have
preference values that may change
(increasing and decreasing) over time;
however, all of the information used to solve
a given problem is temporary in the sense
that it holds for only one localization
episode. In the next episode, when another
given problem in another given geographic
area is undertaken, all of these data will be
gone, unlike the domain-specific
information retained from problem to
problem within a given geographic area.

In addition, we observe that two approaches
to reasoning are employed by successful
human experts. First, they use a data-driven
approach to the problem, where they are
gathering all the information they can bring
to bear on the problem at hand. In this
approach the expert is building up complex
representations of the world. This is bottom-
up reasoning from raw data. Once these
representations have been built, and the
pertinent data have been gleaned from them
(e.g., there is a big valley in the middle of
the image with a hill on either side,
therefore, the configuration hill-valley-hill is
important), then hypothesis-driven reasoning
can begin (e.g., go look for hill-valley-hill
configurations in the map). This is top-down
reasoning from derived information. It is
important to use both data- and hypothesis-



driven approaches because a data-driven
approach works well when little is known
about the problem at hand, but a hypothesis-
driven approach focuses the search when
specific hypotheses exist. And, it is
important to be able to alternate between
them during the course of a problem-solving
episode. A strategic reasoning
superstructure provides the capability for the
system to assess its current state, select
among alternatives for the next step, and
choose the appropriate one. This is the self-
conscious control of the system because the
break points provided in the strata of
reasoning components are the opportunities
for evaluation and selection of the next
course of action.

THE APPROACH

_The approach used for this research was to
understand the features in the domain
relevant to solving localization and then to
construct the representational and control
structures to work with this information.

The individual features are hills, valleys,
walls, etc. Image features have properties
like membership in a group of similar
features (valleys, hills, gaps) and relations to
other features in the image (being right or
left of one another, occlusion) and height in
the frame. Map features have properties like
location, slope, relation to other features
(north-of, south-of, etc.), and elevation. The
current implementation limits features to
points on an X, Y coordinate. This
limitation is used for simplicity of
processing. The most significant of these
properties are the relations among features.
These relations are used to define
configurations of features. One type of
configuration is a linear configuration where
three or more objects are in a line. In this
case the relation between the first two
objects is the same as between the second
and third objects.

Hypotheses are expressions of potential
solutions (or partial potential solutions) to
the localization problem at hand. Multiple,
conflicting hypotheses may be under
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consideration at any one time. There are
three types of hypotheses: feature-match
hypotheses, configuration-match
hypotheses, and viewpoint hypotheses.
Feature-match hypotheses acknowledge the
possibility that a particular map feature may
be a particular image features. These are
constrained by matching rules derived from
the possible visual appearance of map
features. For example, a saddle from the
map may appear as either a valley, a saddle,
or a gap in the image. Only possible
matches need to be posited. Configuration-

“match hypotheses are statements of the

potential correspondence between a
configuration in the map and a configuration
in the image. These are constrained by the
feature matches. For a configuration-match
hypothesis to be retained, not only must the
configuration forms match (two linear and
three component configurations may be
matched, but a linear configuration with
three components and a right-angle
configuration with four components may not
be matched), but the individual features
must be compatible. That is, the appropriate
feature-match hypotheses must exist.
Finally, viewpoint hypotheses are the
outgrowth of configuration-match
hypotheses. If two configurations do indeed
match, then there is a limited area from
which they can be viewed to give the
appearance in the image. The viewpoint
hypotheses are the representation of this. In
addition to the individual components that
must match for it to be true, the viewpoint
hypothesis includes a description of the area
where the observer must be located. This
area is constrained to be within certain map
coordinates limited by the visibility and
intervisibility of the features in the image as
related to their potential match partners from
the map.

Representation Issues

The representation components of the model
use a hierarchical semantic network.
Figure 6 shows the data categories of the
representation components. The lowest level
data is the raw data input from the simulated
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Figure 6. Data Categorles In the Computational Model of Localization

image and map processing system.
Successively higher levels of data represent
abstracted, interpolated, or otherwise
derived data that the system has concluded
from the input data. The components of the
semantic network are the objects and the
relations between them. The components are
represented in frames and the relations are
represented in slots in the frames.

There are actually several hierarchies that
are appropriate to this problem. The main
data representation hierarchies are the
configuration hierarchy and the feature
taxonomy. Hierarchies are also used for
rules and relations.

Individual map and image features are
represented as instances of the classes
defined in a domain-specific feature
taxonomy that divides features into image
features and map features. Image features
are GAPS, IMAGE-RIDGES (so called to
distinguish them from ridges that appear in
the map), IMAGE-SADDLES, IMAGE-
VALLEYS, INCLINES, and PEAKS. These
are all of the elements that can be uniquely
distinguished in an image. Map features are
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divided into BENCHES, DEPRESSIONS,
PROTRUSIONS, and WALLS.
DEPRESSIONS are divided into RE-
ENTRANTS and VALLEYS. VALLEYS
are divided into BASINS, DRAWS,
GULLIES, HANGING-VALLEYS, and
MAP-SADDLES. BASINS are divided into
BOWLS and CIRQUES. MAP-SADDLES
are divided into COLS and PASSES.
PROTRUSIONS are divided into BUTTES,
PEAK-PRIMITIVES, RIDGES, and
SPIRES. RIDGES are divided into
BUTTRESSES, SHOULDERS, and
SPURS. WALLS can be distinguished into
HEADWALLS.

Control Issues

There are many types of expertise brought
to bear on localization problems. High-level
reasoning expertise can select from among
several high-level alternatives:

o Understand the viewpoint,
e Understand the map,
e Generate and test hypotheses.



In addition, these high-level reasoning
processes can call on a number of lower
level subroutines to perform their functions:

» Gather map data,

» QGather image data,

» Scrutinize the incoming data and
connect them to known data,

» Match features,

» Locate configuration,

» Match configurations,

» Establish viewpoint hypotheses,

» Evaluate and refine viewpoint
hypotheses.

Each of these reasoning steps (both high-
level and low-level) is a specialized
subroutine. These subroutines can
encapsulate just enough information to
perform one specific function. The
implementation represents them
independently and weaves them together as
appropriate (e.g., where a high-level
function calls one or more low-level
functions). And, it coordinates the actions of
the multiple experts.

THE SYSTEM

Figure 7 shows the system diagram of the
computer implementation running on a Sun
workstation using KEE® (by Intellicorp)
and lisp. Data flow in from the simulated
image and map processing system and are
posted on either the map or the image
knowledge bases (KBs). These KBs are
built on top of the taxonomy KB, which
contains the problem-specific data about the
localization problem and the geographic
region in general. The taxonomy is the
hierarchy of geographic features that occur
in this area. The control structures are the
reasoners and rule bases that scrutinize the
map and image information, taking into
account their relationships within the
taxonomy. The results of this scrutiny form
the basis for the hypotheses that are posted
in the hypothesis KB. Further scrutiny of the
hypotheses may lead the control structures
to send queries back to the simulated image
and map processing system for more data.
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Figure 7. LOCALE System Diagram

These data will arrive as new postings to the
image and map KBs.

The levels of representation of problem-
specific information from lowest to highest
are:

Input data (map and image),
Feature-match hypotheses,
Configurations (map and image),
Configuration-match hypotheses,
Viewpoint hypotheses.

an instance of one of the classes in the
hierarchy. This allows it to inherit certain
properties from its super classes and to be
reasoned about as a member of the class.

The feature taxonomy provides the basis for
feature matching. Table 1 shows a feature-



Table 1. Feature-Match Matrix(Potential features from the map and the image are compared for match

quality.)

Gaps
Map-Features
Benches
Depressions
Re-entrants
Valleys
Basins
Bowls
Cirques
Draws
Gullies
Hanging-valleys
Map-Saddles
Cols
Passes
Protrusions
Buttes
Peak-primitives
Ridges
Buttresses
Shoulders
Spurs
Spires
Walls
Headwalls
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WWWUNUNMNNWWwWwooOoO0OoOO0OOODOOOOW

match matrix between image and map
features. Feature matches are ranked on a
scale from 0 to 5, bad to good, where O
indicates that a map feature can never
appear as an image feature (for example, a
gully in the map will never appear as a peak
in the image), and 5 indicates a preferred
match (for example, a peak in the image
matches well with a peak in the map).

Reasoning is divided into task-specific
subroutines and proceeds in the manner
described in the approach section above.
Components are high-level (strategic), and
low-level (specific tasks). High-level
components are the conscious reasoners of
the system. They pick the strategic direction
in which the system should proceed, initiate
that work, evaluate its performance, and
then choose the next strategic direction.

Image-
Ridges
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Image-Features

Image- Image-  Inclines Peaks

Saddles Valleys
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RESULTS

In LOCALE two types of heuristics were
used. The first type of heuristic was the use
of configurations. By considering features in
groups instead of as individuals, search was
limited to those features that were parts of
appropriate groups. The second type of
heuristic was the use of category limitations.
Only map features of the appropriate type
were considered for matching with the
image features. In addition, matches were
prioritized based on proximity in the feature
hierarchy, so that stronger matches could be
considered first. Each heuristic is useful, but
the real power of this approach came from
the combination of both heuristics. The
result was to constrain the search space to



only those map features that were parts of
appropriate configurations and were of the
correct type to match with the image
features. The effect of this is to determine
the subset of features that meets the
configuration constraints and to determine
the subset of features that meets the
category constraints, and then to take the
intersection of those two subsets as the
search space. We can quantify the benefits
of this approach for an example problem.
After three levels of map data detail and two
levels of image data detail have been loaded
into the system, there are thirty-seven map
features and eight image features. The
number of possible matches between these

two sets is 6.48914 x 1016, The power of
this approach is that very few possible
matches are actually considered and
explored. Using the configuration heuristic,
there are only 98 map configurations that
match the current image configuration.
Using the category heuristic, there are only
52 possible matches between the image
features and map features that are
constrained by the compatibility of their
categories. Combining the results of those
two heuristics, there are only twelve
configuration-match hypotheses that can be
developed into viewpoint hypotheses. This
reduction of the search space is dramatic.
Because this is a heuristic approach, its
performance cannot be guaranteed in the
same way an algorithm's performance can.
The reduction in search depends on the
uniqueness and identifiability of the feature
categories and the availability of
configurations; however, this magnitude of

search reduction was consistently observed
among all the test cases. Table 2
summarizes the state space reductions
observed in both this and other test cases.
The prospect of exploring and evaluating 10
to 20 test cases is reasonable. And, even if
the correct solution is not always selected as
the best alternative at any one time, the fact
that it exists among the small, select set of
alternatives is significant.

CONCLUSIONS

This work has analyzed the components of
the localization problem. The solution of
this problem is a critical component to
future work on autonomous mobile robot
systems like those proposed for missions
such as the Mars rover/sample collector.
Localization has the potential to become a
computationally insurmountable problem.
However, heuristic strategies for high-level
control can be employed to combat this
challenge. Two such strategies are the use of
configurations of features to control feature
matching and the use of category
limitations. The LOCALE system has been

implemented to demonstrate these
strategies.
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Table 2. Comparison of Test Cases

Number of Number of Viewpoint
Map Features Image State Space Hypotheses
Test Case Features Explored
Moran 37 8 2.0 x 1012 12
Teewinot 37 5 6.1 x 107 12
Bivouac a7 6 2.0 x 10° 20
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1 Abstract

A neural network based system is presented
which is able to generate point-to-point move-
ments of robotic manipulators. The foun-
dation of this approach is the use of proto-
typical control torque signals which are de-
fined by a set of parameters. The parameter
set is used for scaling and shaping of these
prototypical torque signals to effect a de-
sired outcome of the system. This approach
is based on neurophysiological findings that
the central nervous system stores general-
ized cognitive representations of movements
called synergies, schemas, or motor programs.
It has been proposed that these motor pro-
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grams may be stored as torque-time functions
in central pattern generators which can be
scaled with appropriate time and magnitude
parameters. The central pattern generators
use these parameters to generate stereotypi-
cal torque-time profiles, which are then sent
to the joint actuators. Hence, only a small
number of parameters need to be determined
for each point-to-point movement instead of
the entire torque-time trajectory. This same
principle is implemented for controlling the
joint torques of robotic manipulators where
a neural network is used to identify the rela-
tionship between the task requirements and
the torque parameters. Movements are spec-
ified by the initial robot position in joint co-
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ordinates and the desired final end-effector
position in Cartesian coordinates. This in-
formation is provided to the neural network
which calculates six torque parameters for
a two-link system. The prototypical torque
profiles (one per joint) are then scaled by
those parameters. After appropriate training
of the network, our parametric control design
allowed the reproduction of a trained set of
movements with relatively high accuracy, and
the production of previously untrained move-
ments with comparable accuracy. We con-
clude that our approach was successful in dis-
criminating between trained movements and
in generalizing to untrained movements.

2 Introduction

An important problem in space robotics is
point-to-point control of the robotic arm
end-effector in an unstructured environment.
Many attempts have been made to solve this
problem: the usual methods are tedious and
computationally intensive to solve in real-
time, even with the most advanced compu-
tational methods ( [4], [11], [13]). This paper
introduces a different strategy based on mo-
tor control principles used by humans.

In many studies on human movements,
consistent and stereotypical hand and joint
trajectories have been observed across move-
ment speeds, extents, directions, and exter-
nal loads. Such findings support the no-
tion that movements are controlled by pro-
totypical motor programs which are stored in
the central nervous system and scaled to fit
the requirements of each particular movement
task before playback [1], [2], [5], [7], [12],
[15], [16]. In particular, it has been proposed
that these motor programs may be stored as
muscle force-time functions and that differ-

ent movements along the same path, but with
varving speed or paylod, can be executed by
playing back those functions with appropriate
time and magnitude scaling. Therefore, the
human motor system replaces the explicit cal-
culation of the entire muscle-force profile by
the calculation of just a few scaling parame-
ters which are used to control central pattern
generators (CPG) where the motor programs
are stored.

A problem emerging from the motor pro-
gram concept is that, since an infinite number
of possible movements exist, the nervous sys-
tem must have some way to calculate or to
look up an infinite number of possible scal-
ing parameters. Recently, engineering solu-
tions for similar problems have been intro-
duced in the form of artificial neural networks
(ANN’s [14]). Essentially, an ANN consists of
processing elements, interconnection topolo-
gies, and a learning algorithm governing the
modification of connection strengths depend-
ing on mapping performance. Generally, an
ANN allows the mapping of input values into
output values based on previously established
mapping rules. These rules are determined
via a repetitive trial-and-error learning pro-
cedure rather than by explicit calculations.
An important characteristic of ANN’s is that
once a correct mapping has been learned for a
number of input values, the network can gen-
eralize and provide correct output values even
for untrained input values. Thus the above
problem of representing an infinite number of
parameters can be overcome by using neural
networks to find suitable solutions.

To summarize, control by motor programs
appears to be potentially useful for manipula-
tor control because the controller would only
have to calculate a limited number of scal-
ing parameters before movement onset rather
than calculating the entire joint torque-time
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profiles in real-time. This results in a robotic
manipulator control system that can be re-
ferred to as a Parametric Control System, and
is presented here as a means of controlling
the joint torques of a two degree-of-freedom
planar robotic manipulator. Furthermore,
this approach is used in conjunction with a
neural network which identifies the relation-
ship between the task requirements and the
torque parameters. Therefore, the approach
presented here combines the motor program
concept with neural networks to determine
the joint torque-time functions necessary to
drive a robotic manipulator end-effector from
an initial to a desired final configuration.

3 Control Strategy

The control problem is to move a two-link
planar robotic arm, as shown in Figure 1,
from an initial position to a desired final posi-
tion within the workspace shown. The robot
manipulator control system, which was used,
is designed to utilize the benefits of the motor
program concept, and is illustrated in Fig-
ure 2. The adaptive controller is an ANN,
trained to map inputs z4,0, into outputs
p. The parameters p are applied to a func-
tion generator which generates a prototypical
time-function. This time-function is scaled
by p to yield the force-time functions Ta(t),
one per joint, to be applied by the plant. In
the work reported here, the plant is the Ra-
dius robotic manipulator at the University of
Toronto Institute for Aerospace Studies [3].
This manipulator is a two degree-of-freedom
planar manipulator with rigid links, where
the links are supported by airjets in the hor-
izontal plane. The airjets allow the Radius
robotic manipulator to move in the horizontal
plane without friction. The two joint actua-
tors are harmonic-drive servomotors with the

joint position 8, being measured by precision
potentiometers.

The ANN was implemented using the
structure shown in Figure 3. Each neuron 1s
a logistic unit having a working range of - 1.0
to + 1.0 with all of the neurons being fully
forward-connected. Inputs to the ANN struc-
ture are 74, the two Cartesian coordinates of
the desired final gripper position, and f,, the
actual initial angles of both joints, with 6,
and z4 being sampled once before a move-
ment.

The input signals =4 and 0, pass through
a layer of 127 coarse-coding neurons [6] (each
neuron being tuned to a range of input val-
ues with overlapping ranges for neighboring
neurons), then through two hidden layers of
20 units per layer (the first layer containing
20 neurons and the second layer containing
20 neurons) and finally through a layer of six
output neurons. The output signals provided
by the last laycr represent the values of the
six parameters p which were previously de-
scribed. Three of these parameters are used
for each joint, p; to p; for the shoulder joint
and p4 to pe for the elbow joint.

The parameters p serve as inputs to
the Function Generator (Figure 2), which
in turn provides two output signals Tu(t),
one for each joint, which are applied to the
plant. Both output signals are triggered syn-
chronously when p changes after a new z4 has
been entered, and each output signal consists
of two successive sinusoidal half-waves hav-
ing an overall duration of 4 sec. Figure 4
illustrates that p; and p4 represent the per-
centage of movement time taken by the first
lobe of the two torque profiles, one for each
joint, and pq, ps, ps, and pe represent the max-
imum torque amplitudes for each lobe of the
two torque profiles.
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The function of the ANN is, essentially,
to map four discrete input signals z4,0, for
the two joints into six discrete output signals
p1, P2, and p; (the torque parameters for the
shoulder joint) and p4, ps, and pg (the torque
parameters for the elbow joint). Only a single
mapping action per movement is needed. The
modifiable ANN weights are adjusted in order
to achieve satisfactory mapping by a modi-
fied version of Direct Inverse Modeling (8], a
known training procedure.

In this modified Direct Inverse Model-
ing training procedure, the initial Radius
joint positions #, are first noted and an op-
erator then moves the gripper into a se-
lected final position z; along an approxi-
mately straight path with an approximately
bell-shaped, single-peaked velocity profile of
4 second duration. The joint trajectories 8(t)
during thal movement are recorded on a disk
and subsequently transformed into predicted
joint torque profiles T,(¢) using Rudius’s In-
verse Dynamics equations. Next, predicted
joint torque profiles T,(t) are approximated
by two sinusoidal half-waves of variable rel-
ative duration and amplitude and the corre-
sponding parameters p are noted. Then, Ra-
dius having been reset to 6,,p is provided as
inputs to the function generator which sup-
plies outputs Ty(t) to the actuators in order
to drive Radius to a final position noted as z,.
Since the parameterization is only an approx-
imation, Ty(¢) and T),(t) will be somewhat dif-
ferent and z,; will be somewhat different from
T

The noted values of 24,8, and p character-
ize one movement of a training set. The above
steps are repeated for 225 different move-
ments of various amplitudes and directions
within the workspace shown in Figure | to
yield a set of 225 training movements char-
acterized by their respective values of z,4,8,

and p.

Training of the ANN commences by ini-
tializing the modifiable weights with random
values. Then z4 and 6, of the training set
are used as the ANN inputs and the corre-
sponding outputs p are recorded. The differ-
cnce between p as calculated by the ANN and
the corresponding p as noted for the train-
ing set is the ANN performance error and
is used for incremental weight changes ac-
cording to the backpropagation rule. ANN
performance 1s considered satisfactory when
the output values p; to pg, which are applied
to the function generator, result in a grip-
per movement to the desired final position z4
such that z, ~ z4.

4 Results

An illustrative representation of network per-
formance is given by Figure 5, where the fi-
nal position error of the end-effector is plot-
ted. The errors are coded as lines from the
actual final position to the desired final po-
sition. Performance before training is shown
in Figure 5A, and after training (10,000 itera-
tions) in Figure 5B. As can be seen, the errors
between the desired and actual final end ef-
fector positions are greatly reduced. In fact,
the average error drops from 0.75 m before
training, to 0.03 m after training: in compar-
ison, the robotic arm is 2.12 m long. There-
fore, the error after learning was almost an
order of magnitude smaller than the inter-
target distances which ranged from 0.1 m to
0.85 m. Thus, the system was able to dis-
criminate between targets. Figure 5C shows
the final position errors of the trained neural-
network controller using a set of movements
that were not previously trained. As can be
seen, the average final position error of 0.07
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m was slightly higher than the trained data
set, but was again less than the shortest in-
tertarget distance. Therefore, generalization
within the workspace was successful.

5 Conclusions

We have described a solution to the control
of point-to-point movements of a two joint
planar robotic arm. This parametric control
concept is qualitatively different from tradi-
tional approaches described earlier. Instead
of explicitly calculating the torques for the
entire trajectory, the new concept specifies
only a limited number of characteristic pa-
rameters. In addition, the control system
presented in this paper provides the follow-
ing advantages over most other known types
of systems:

1. No explicit knowledge of the manipula-
tor’s dynamics is required.

The nonlinear (ANN) stage is not in a
control loop which will avoid any prob-
lems due to computational delays of
the type generally caused by nonlinear
stages.

The ANN can be easily retrained for
different robotic manipulators and/or
changing robot dynamics.

The design of a controller for a multi-
link robotic manipulator with n > 2 is
not qualitatively different than that de-
scribed in this paper since the nonlin-
ear stage is designed by trial-and-error
rather that by an analytical solution.

In addition, our control concept discrimi-
nates between targets, and generalizes to un-
learned target positions. This parametric

control should be particularly useful for real-
time robot control in unstructured environ-
ments since only a limited number of vari-
ables need to be updated, therefore placing
less of a computational burden on the con-
troller. Moreover, our control concept may
be improved to achieve a more accurate ter-
minal approach to the targets by the addi-
tion of sensory feedback, as found in humans.
Also, this concept could be easily expanded
to allow for velocity control by direct scaling
of the torque profiles, and better control of
movement paths could be achieved by adding
more parameters (p;).
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Figure 1: Two-link planar manipulator and workspace (L1 and L2 are the link lengths of the first
and second links, where L1 = L2 = 1.06 m).
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Figure 2: Block diagram of the control system utilized, where solid lines represent time varying
actions and hatched lines represent a single mapping actions per movement (X, and X, are the
desired and actual end-effector positions, 6, the initial robot configuration in joint coordinates,
Pjs are the torque scaling parameters, 7(t) and T,(t) are the joint torque-time profiles for the
shoulder and elbow joints, and T,(t) represents the input torques to the plant).
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Figure 3: Artificial neural network architecture used in the simulations reported here (n = 127).
All neurons are fully forward- connected to the neurons in the layers in front.
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Figure 4: Torque parameterization scheme employed. Where p;, and p4 are the time of switching
from the first lobe to the second lobe for torque profiles Ty and T, respectively, p, and ps are
the amplitudes of the first lobe, and p3 and pg are the amplitudes of the second lobe for torque
profiles T} and Ty.

36



LA G 3
R RH

L1 X axis
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end-effector positions (A - final position errors before training, B - final position errors after

training, for same workspace as A, C - final position errors for an untrained data set, for same
workspace as A also).
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Abstract

We present a novel time-domain method for
the detection of faulty bearings that has
direct applicability to monitoring the health
of the turbopumps on the Space Shuttle
Main Engine. A feed-forward neural network
was trained to detect modelled roller bearing
faults on the basis of the periodicity of
impact pulse trains. The network’s
performance was dependent upon the number
of pulses in the network’s input window and
the signal-to-noise ratio of the input signal.
To test the model’s validity, we fit the
model’s parameters to an actual vibration
signal generated by a faulty roller element
bearing and applied the network trained on
this model to detect faults in actual vibration
data. When this network was tested on the
actual vibration data, it correctly identified
the vibration signal as a fault condition 76%
of the time.

1.0 Introduction

A critical aspect of the Space Shuttle Main
Engine (SSME) as a reusable space vehicle
is the durability of its components. One
major inadequacy has been the insufficient
life of the bearings in the SSME'’s
turbopumps. The life expectancy of the
turbopump was designed to be 55 missions,
but actually the pumps require an overhaul
every one to three missions As a result, a
significant ground test program has been
required to provide "flight-qualified"
turbopumps. One means of reducing the cost
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associated with ground testing is to provide
a preflight, non-invasive monitoring
procedure that can detect subtle bearing
failures without requiring the firing of the
SSME. This paper describes a novel bearing
failure detection technique that is suitable for
preflight inspection of SSME components.

The most common failure modes of rolling
element bearings are local defects in the
outer race, the inner race, or a rolling
element. As the bearing rotates, whenever
the defect passes through the element-to-race
contact area, a short duration impact is
generated that can be detected by
accelerometers or acoustic emission sensors
mounted near the bearing. A typical
accelerometer signal generated by a faulty
bearing is shown in Figure 1. This signal is
characterized by transient events caused by
bearing imperfections. These transients occur
against a background of minute transients
whose sum is approximated well by a
Gaussian distribution. The fault transients
typically exhibit a quasi-periodicity governed
by the rotational speed and the bearing
geometry'. The interval between such
transients is typically much longer than the
duration of the transient itself. Such impact
transients have been recorded from SSME
turbopumps using acoustic emission sensors®.
Because the structure of each fault transient
is generally random, the challenge associated
with the early detection of bearing faults is
to detect the fault transients’ periodicity.
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Figure 1 A typical faulty vibration signal.
Impact transients are indicated.

In the past, spectral analysis had been used
to analyze the acceleration signals from
faulty bearings'. The basis for this analysis
is that the frequency corresponding to the
spacing of the fault transients shows up as a
peak in the frequency domain. The problem
with this method is that the noise in the
interval between fault transients tends to
dominate the power spectrum due to the
temporally local nature of the fault
transients. Consequently, only large bearing
faults can be detected using this method.
This has been shown to be the case for
detecting turbopump bearing cage failures. A
severely damaged turbopump bearing
exhibits peaks in the accelerometer signal’s
power spectrum at 214 Hz and 428 Hz.
These are the primary and secondary
harmonics of the bearing cage at 104% of
the turbopump’s rated power level. Even
under severe fault condidions, these spectral
peaks cannot be reliably detected.

More recently, time-frequency methods, such
as wavelet transforms, have been applied to
transient signals in an attempt to address the
averaging problems associated with Fourier
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techniques’. Such techniques have proven
quite useful in characterizing temporally
local events. However, due to the local
nature of their basis functions the time-
frequency techniques are inappropriate for
detecting periodicity in the signal.

As an altemnative to spectral and time-
frequency techniques, we propose to use
time-domain analysis as a means of
detecting the inter-pulse interval associated
with bearing fault transients.

The simplest time-domain algorithm for
detection of pulse trains in the presence of
noise is averaging of points in the vibration
signal which are one period of the pulse
train apart'. This averaging enhances the
pulses by reducing the effect of random
background noise. While this method is
effective for enhancing deterministic signals
in rotating machinery, such as cylinder
pressure in intemal combustion engines, its
use is limited in the bearing fault detection
application. The main problem is that the
pulses are random, being a sum of stress
waves that reach the sensor through multiple
paths between the bearing contact points and
the sensor mounting point. The rolling
element-to-race impact that produces the
pulse is itself random, being dependent on
the exact orientation and vibrations of all the
bearing components at that instant.
Consequently, the pulse spacing is not
exactly constant and no two pulses have the
same shape. As the resuit of the
randomness, the averaging process attenuates
the pulses just as it attenuates the
background noise, and does not improve
significantly the detectability of the fault.

Another practical limitation of the averaging
method is the need for accurate data
alignment during the averaging process. In
the engine cylinder pressure example, a



one-per-revolution signal is sufficient for
perfect alignment of signals of any length.
In the bearing case, the frequency of the
pulses is a product of the rotational speed
and a geometric constant. Therefore, a
one-per-period signal cannot be generated,
making it impossible to align long records
accurately.

The contribution of this paper is the use of
a feed-forward neural network as an
alternative time-domain detection method for
pulse trains generated by faulty bearings.
The three main features of our method
overcome the limitations of the averaging
method. First, the fault transients are not
required to possess a specfic structure.
Second, there is no need for data alignment.
Finally, our algorithm can tolerate moderate
variations in pulse spacing. In summary, our
method can detect pulse trains in noise
without excessive sensitivity to the features
and repeatability of the pulses.

The next section details the signal model
used to train the neural network. Section 3.0
describes the neural network experiments
conducted on the modelled data. Section 4.0
provides the results of those experiments and
Section 5.0 presents the results of an
experiment applying the network detector to
actual vibration data generated by a faulty
roller bearing. This data was collected from
a simple test device. Finally, Section 6.0
discusses the conclusions drawn from these
results.

2.0 Vibration Signal Model

To develop the neural network-based fault
detector, we modelled the vibration signal
generated by a faulty bearing as a pulse train
embedded in Gaussian noise. The pulse
train possessed a specific periodicity. These
pulse train signals generated using various
signal-to-noise ratios (SNRs) were used to

41

train the neural network. Once trained, the
neural network was tested using actual
vibration data collected from a faulty ball
bearing in our laboratory.

In order to train a neural network to serve as
a generic fault detector for rolling element
bearings, a general signal model was
developed. Faulty vibration signals are
characterized by quasi-periodic impact
transients. Figure 1 shows a faulty vibration
signal with two impact transients indicated.
We were interested in a signal model that
provided only quasi-periodicity information
as a classification cue. Therefore, we used
the same Gaussian statistics to generate both
the pulses and the background noise. The
only difference between a pulse and noise
was the mean amplitude of their respective
distributions.

Two classes of vibration signal were
generated. The first class of signals
possessed pulses whose inter-pulse interval
was random (uniform distribution between
zero and twice the mean interval). The
second class was designed to represent a
vibration signal generated by a faulty
bearing. This signal possessed a pulse train
that exhibited a quasi-periodicity (a Gaussian
distribution with a variance equal to 20% of
the mean inter-pulse interval). The pulse
width to inter-pulse interval ratio was (.22
and the position of the initial pulse was
chosen randomly (a uniform distribution
between zero and the mean inter-pulse
interval).

The signal-to-noise ratio of a model signal
was computed as follows

2

A
SNR = 10log— (1)
AN

where A; and A, are the means of the
Gaussian distributions used to generate the



pulse and the noise, respectively. The final
signal was generated by adding the Gaussian
noise to the pulse train signal.

3.0 Neural Network Training

Feed-forward neural networks with two
layers of modifiable weights were used
throughout the study. Two sets of
experiments were conducted. In the first
experiment, we trained the network on input
signals containing an average of ten pulses.
In the second experiment, the network was
trained on signals containing only three
pulses on average. The network trained on
ten pulses contained 192 input units, 20
hidden units, and 2 output units. The
network trained on three pulses contained 63
input units, 10 hidden units, and 2 output
units. The size of the input layer was
determined by the number of signal sample
points required to provide the appropriate
number of pulses to the network. The
number of hidden units was chosen to
provide a sufficient number of degrees of
freedom to solve the classification problem.
In both cases, the desired output was [1 -1]
for the good bearing and [-1 1] for the faulty
bearing.

The network was trained using the
back-propagation learning algorithm’. The
leaming rate and the momentum were set at
0.01 and 0.9, respectively. These values
provided the best convergence and training
rates for the two networks.

During training, network weights were
adjusted so as to minimize the difference
between desired and actual output values.
Each pattern presented to the network was
generated at the time of presentation and,
therefore, the network never saw the same
pattern twice. Training continued until the
average improvement in performance over
weight updates fell below a fixed threshold.
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This is termed asymptotic performance.
4.0 Network Performance

For the ten-pulse and the three-pulse
networks, training was conducted on signals
with a given SNR. Performance figures for
each network was obtained for various SNR
values. Table 1 provides asymptotic
performance levels for the ten-pulse network
at the SNRs indicated. Although the SNR
for the last two experiments was less than
zero, the average amplitude of the pulse was
larger than the background noise as a result
of adding the pulse vector to the noise
vector to produce the final signal.

Ten—-Pulse Neural Network

SNR [dB] Performance
(%]

20.0 87.7

14.0 86.4

6.0 81.9

0.0 80.2

-3.5 79.6

-6.0 54.6

Table 1 Detection pérfoxmancc for ten-
pulse network (% correct classification).

As can be seen from the performance values,
the network’s ability to detect the quasi-
periodic pulse train degrades less than 10%
as the SNR is decreased from 20.0 dB to
-3.5 dB. However, at an SNR of -6.0 dB the
performance falls to near chance. This
represents a precipitous drop in performance
below an SNR of -3.5 dB.

Table 2 presents performance values for the
three-pulse  network. This network



consistently performed 10% to 15% below
the ten-pulse network. This indicates that

Three-Pulse Neural
Network
SNR [dB] Performance
[%]
20.0 75.4
14.0 76.5
6.0 74.0
0.0 69.7
-3.5 65.0
-6.0 60.0
-12.0 53.0

Table 2 Detection performance for three
pulse network (% correct classification).

the network performs better as a function of
the number of pulses within its input
window, as expected.

5.0 Vibration Data

To test the model against actual vibration
signals, we obtained vibration data from a
faulty ball bearing. The data was acquired
from an accelerometer mounted on the
bearing housing which held the outer race.
The inner race of the bearing was mounted
to a rotating shaft which was driven by an
electric motor. The bearing was
disassembled and the outer race was
damaged with a grinding tool. During data
collection, the shaft was rotated at a constant
RPM and the vibration signal was digitized
and recorded by a personal computer
equipped with an A/D converter.
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The faulty vibration signal exhibited quasi-
periodic pulses similar to the model signal.
The frequency of the pulse train was
proportional to the RPM of the rotating
shaft. We estimated the signal-to-noise ratio
of the vibration signal to be 12.5 dB. We
computed this value by measuring the mean
amplitude of the signal within the inter-pulse
interval which we used as the mean of the
noise. We then measured the mean
amplitude of the pulses and subtracted the
mean amplitude of the noise to obtain the
mean amplitude of the signal. We then used
Equation 1 to compute the signal-to-noise
ratio.

A model of the vibration signal was
developed by fitting the parameters
governing the periodicity of the modelled
fault signal to the actual statistics of the
vibration signal. In this case the pulse width
to inter-pulse interval ratio was 0.054 which
was a factor of 4 times smaller than the
original model. The variance in the interval
between each pair of pulses was a 20% of
the mean inter-pulse interval. This value
was used previously to generate the
modelled signal for the simulation
experiments described above.

A three-pulse neural network was trained on
model signals as described above. This
network achieved an asymptotic performance
of 89% correct classification on the
modelled data. The network weights were
then fixed and tested by presenting the
network actual vibration data obtained from
the faulty roller element bearing. The
network classified the fault signal as a fault
76% of the time.

6.0 Discussion
A feed-forward neural network was trained

to detect modelled roller bearing faults on
the basis of the quasi-periodicity of impact



pulse trains. The network’s performance
was dependent upon the number of pulses in
the network’s input window and the signal-
to-noise of the input signal. To test the
model’s validity, we fit the model’s
parameters to an actual vibration signal
generated by a faulty ball bearing. We then
applied the network trained on this
experimental model to the detection of faults
in an actual vibration signal.

The performance of the three-pulse network
trained on the modelled signal whose
parameters were fit to actual vibration signal
statistics performed much better than the
three-pulse network trained during the
original set of experiments on signals with
the same SNR. This is accounted for by the
difference in the pulse width to inter-pulse
interval ratio between the two cases. In the
simulation, model the ratio of the pulse
width to the interval between the pulses was
four times as large as the same ratio derived
from the actual vibration signal. Therefore,
the percentage of confusable patterns
generated using random inter-pulse intervals
was significantly larger for the simulation
model.

However, the performance of the same
network applied to the actual vibration signal
was much closer to the performance of the
network trained on the simulation model.
This suggests that perhaps the actual
variance in the inter-pulse interval exhibited
by the actual vibration data should have
been measured and used as a model
parameter in the experimental model. In any
case, the differential in classification
performance on the modelled and the actual
signal data suggests that a more accurate
signal model is required.

It should be pointed out that the performance
figures presented in this study were obtained
by requiring the neural network to make a

decision based on a very small portion of the
signal. In the case of the actual vibration
signal, the network’s decision was based on
a signal segment only 3.75 ms in length.
We could improve the performance of a
neural network-based fault detector
significantly by using a time-delay neural
network which would allow us to scale the
amount of information available to the
network a couple orders of magnitude.

The current model completely ignores any
characteristic structure of the impact pulses.
This was done to ensure that the network
detector would be applicable for a variety of
bearing faults and systems being monitored
under various environmental conditions.
However, if the application were restricted
sufficiently to allow the use of characteristic
impact pulse features, a second neural
network could be used to extract such
features allowing the detection of faults at
much lower SNRs. The capability of neural
networks to detect transients in noise was
demonstrated in a previous paper’. This
work showed that a neural network trained
to detect a transient with specific structural
characteristics consistently out-performed a
matched filter designed for the same

purpose.

In future work, we plan to apply this
technique to the monitoring of bearing
failure for the Space Shuttle Main Engine
turbopumps. This application would allow
us to monitor the system under controlled
conditions ensuring that the RPM of the

- pump was held to a fixed value. However, in

some practical applications, where the RPM
of the rotating shaft could vary widely, it
would be necessary to either restrict the
range of RPMs monitored by a neural
network fault detector or use a bank of
network detectors each tuned to detect faults
in a specific RPM range. This is due to the
fact that the network cues on perodicity



information which must be restricted to a
finite range in order to distinguish a periodic
pulse train from random pulses.
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Abstract

Fault isolation and sensor placement are vi-
tal for monitoring and diagnosis. A sensor
conveys information about a system’s state
that guides troubleshooting if problems arise.
We are using machine learning methods to
uncover behavioral patterns over snapshots
of system simulations that will aid faull iso-
lation and sensor placement, with an eye to-
wards minimalily, fault coverage, and noise
lolerance.

1 Introduction

Accurate and timely fault diagnosis is crit-
ical in the life cycle of many physical sys-
tems. Seemingly minor faults can, if un-
remedied, lead to catastrophic faults that
disable a system permanently. To iden-
tify faults, (human or machine) diagnosti-
cians observe the system’s behavior primar-
ily through sensor readings. Sensors should
generally be selected to be maximally infor-
mative about the state of the system. In the
best of all possible worlds, we might expect
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that sensors should be placed on all measur-
able quantities of a system; anomalous val-
ues on one or more sensors could then read-
ily identify the presence of and help isolate
system faults. However, costs are associated
with sensors. These costs correspond to ac-
tual monetary cost as well as costs due to
the physical design constraints of the sys-
tem such as power, mass, and volume which
are at a high premium in systems such as
Space Station Freedom. In addition, in-
creased numbers of sensors introduce more
information that an operator must atiend
to; too many sensors can lead to informa-
tion overload, thus actually contributing to
a degradation in (human) diagnostic perfor-
mance.

In many cases it is neither feasible nor de-
sirable to measure all quantities of a system.
Thus, the diagnostician must interact with
the system in two other ways: probing and
testing. One can think of probing as sens-
ing a quantity dynamically to determine its
value at a particular point in time. In test-
ing we examine component output quanti-
tics while systematically varying its inputs.
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Probing and testing increase the cost (e.g.,
time) of diagnosis and may even be impos-
sible on remote systems such as unmanned
spacecraft. Moreover, probing and testing
are only initiated when there is some indi-
cation of a fault. Thus, we would like to ju-
diciously place sensors so that they indicate
the existence of faults and focus attention
on their plausible causes.

Sensor placement is the task of determin-
ing a set of sensors which allows the most ac-
curate determination of the overall state of a
monitored system while minimizing costs re-
lating to the number of sensors, power con-
sumption, cost, and weight. Reducing these
quantities is particularly important in space
platforms due to power and space restric-
tions. In response, we are using two ma-
chine learning methods to identify categories
of system behavior that are similar in terms
of measurable quantities. In this paper we
describe the specific methods used and ana-
lyze their results. As we will illustrate, these
results can be exploited for purposes of diag-
nosis and design for diagnosability, notably
sensor placement.

We describe a methodology for applying
inductive learning systems to the discovery
of ‘rule bases’ for diagnosis. Our primary
reason for doing so is to facilitate system de-
sign. In particular, rules suggest measurable
quantities that are most diagnostic. Given a
suitable tradeoff between coverage, accuracy
and sensor cost, we envision a tool that aids
system designers in sensor selection. We are
currently in the process of systematically ex-
ploring the interaction between these factors
in the context of two learning systems, Quin-
lan’s C4.5 [13] and Fisher’s COBWEB [6],
with a longer-term goal of developing objec-
tive function(s) that reflect such a tradeoff.
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2 Supervised Learning
Approach

Supervised learning systems discover rules
that characterize preclassified observations.
For example, supervised machine learning
systems are used in medical diagnosis; given
patient case histories that record features
such as gender, age, aspects of medical his-
tory, and a variety of test results, as well
as a diagnosis provided by a physician, a
supervised system discovers rules that are
consistent with the physician-supplied diag-
noses. We can also use this technology for
purposes of fault diagnosis. In particular,
consider the model of a thermal subsystem
given in Figure 1.

We have used the following strategy to
learn rules that distinguish a variety of con-
ditions that can cause anomalous behavior
in this system.

[1] Specify a simulator that represents each
major system component as a func-
tion that maps component inputs to
outputs. Simulation using a model-
based methodology similar to Kuipers’
[10] begins with an initial state of sys-
tem parameter settings and propagates
parameter changes through component
functions until the simulator converges
on a steady state.

[2] Associated with each system component
are permissible parameter (continuous
and discrete) ranges, within which the
component is assumed to operate sat-
isfactorily. Initial simulator parame-
ters are systematically perturbed be-
yond extreme ends of these ranges for
each component, thus yielding condi-
tions under which the system is liable
to malfunction.
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Figure 1: A thermal model.

[3] Each condition set generated in step [2]
is propagated through the system un-
til a steady state (or some error con-
dition) is reached. A database record
(which consists of measurements from
each observable parameter in the sys-
tem, labeled by the initial perturbed
condition) is generated.

[4] The system state descriptions of all
simulations are collected together and
passed to a supervised learning system.

[5] The learning system forms a decision
tree, then extracts rules that distin-
guish anomalous behaviors that were
caused by different parameter pertur-
bations.

We have used a supervised learning sys-
tem known as C4.5 to form a diagnostic
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rule base. C4.5 has separate programs that
(1) construct a decision tree and (2) form
a rule base. In particular, C4.5 was used
to discriminate the system perturbations
(‘faults’) generated in step [2] of the sim-
ulation/learning procedure outlined above.
Our thermal model contained a total of 87
fault types. In addition, three versions of
each perturbation type were generated, cor-
responding to cases where the sclected pa-
rameter value was perturbed just above (or
below) acceptable ranges, moderately out of
range, and far out of range. Intuitively,
these corresponded to conditions of high
(low), very high (low), and extremely high
(low) values, but cach case was labeled by a
single fault (e.g., the parameter was ‘above
acceptable range’). Thus, the decision tree



had to distinguish 87 ‘faults’, derived from
over 261 observation sets (snapshots). Each
snapshot was represented by 23 system pa-
rameter values. Using C4.5, we constructed
decision trees much like the one partially
shown in Figure 2.

PUMP-SPEED-LOW

VALVE1-POS-LOW VALVEIL-POS-LOW

Figure 2: A partial decision tree over
anomalous behaviors.

Initially, we are interested in two items:
(1) the diagnostic accuracy of this tree, if we
insist that faults must be perfectly isolated,
and (2) how much the tree ‘compresses’ the
parameters needed to attain a desired accu-
racy. We call this second factor the param-
eler compression ratio.

In this example, the decision trce cor-
rectly and uniquely classified 73% of the
snapshots over which it was constructed.
Note that the failure to perfectly classify
all known behaviors is the result of C4.5’s
mformation-theoretic measure which could
nol, reliably distinguish certain behaviors
with the existing observable parameter val-
ues. These points of ambiguity are precisely
where system designers should focus sensor
placement efforts in order to better distin-
guish faults. It required that approximately
18 of the 23 parameters be consulted in or-
der to achieve this accuracy — a parameter
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compression ratio of (23 — 18)/23 or 0.22.

The statistics above reflect a bias that
the decision tree (or any rule-based system
for that matter) should not attempt to per-
fectly isolate a fault. However, we can re-
lax the diagnostic task, and allow catego-
rization to identify an observation’s fault
as one of a small number of possibilities.
The tree above will correctly identify each
observation as exhibiting 1 of at most 3
fault possibilities (pump-speed-low, valvel-
pos-low, valvel-pos-high) in 100% of the
cases. Thus, we are are interested in the
degree to which the tree isolates a fault. In
this case, our minimal fault compression ra-
tio 1s (87 — 3)/87 or 0.97.

Three aspects of this inductive analysis
are of interest. FEach of these speaks to
the success of the diagnostic task, and pro-
vides guidelines for fault isolation and sensor
placement. Qur particular concern in this
latter regard is with sensor placement.

® The faull compression ratio tells us the
degree to which a behavior’s fault can
be isolated using the rule base. In-
versely, it is a measure of the extent
that we will have to rely on other
sources of knowledge and diagnostic
procedures, such as an expert or system
simulation in conjunction with model-
based diagnosis, to discriminate the
fault from the reduced set of possibil-
ities.

e The parameler compression ratio indi-
cates the proportion of system param-
eters that need to be accessed for di-
agnosis over a population of behaviors.
This is a guide to the number of sensors
that will be required if diagnosis relies
simply on sensor values.

e The diagnostic accuracy in a system is
the percentage of behaviors that are

-



correctly categorized as one of several
possibilities. It measures the reliabil-
ity of diagnosis within the rule base,
whereas fault compression measures the
granularity.

These factors are, of course, interdepen-
dent. For example, decreasing allowable
fault compression (undesirable) will tend to
increasc the required parameter compres-
sion (desirable), and increase diagnostic ac-
curacy (desirable). In general, we cannot
hope to optimize each of these parameters.
Rather, design and sensor placement must
optimize some tradeoff between them. For
example, if accuracy is at a premium, then
we may have to accept an decrease in fault
compression. This implies a corresponding
(but desirable) increase in parameter com-
pression, and an expected decrease in sen-
sor ‘cost’ as well. However, the undesir-
able decrease in fault compression implies
that diagnostic cost will increase from hav-
ing to employ secondary diagnostic proce-
dures such as probing, testing, and simula-
tion to a larger extent.

We are initiating systematic experiments
across the range of diagnostic factors, with
the eventual goal of defining an objective
function that characterizes an appropriate
tradeoff between them. Such a function
will allow us to bound certain factors (e.g.
accuracy, parameter compression or Sensor
‘cost’) and to optimize for the remaining
factors (e.g., fault compression). Our cur-
rent version of C4.5 builds a decision tree
based on the diagnosticity of system param-
eter values. Other variations that take into
account the cost of sensing certain values
have also been developed by Tan & Schlim-
mer [15].

A decision tree representation of a rule
base is conceptually simple, and it has the
desirable aspect of encoding the ‘minimal’

51

number of system measurcments necded to
isolate faults to a certain granularity. How-
ever, it also has some well-known disadvan-
tages. Notably, a decision tree is very sen-
sitive to noise in sensed system values (or
faulty sensors, which we regard as another
type of noise): a single misleading value can
lead diagnosis considerably astray. One im-
plication is that the minimality characteris-
tic of decision trees may not be wholly de-
sirable; uncertainty in a domain may insist
on some redundancy in the sensed values, in
order to better protect against the possibil-
ity of noise. Thus, in addition to our studies
with C4.5, we are also investigating a second
inductive approach known as clustering.

3 Cluster-Analytic Ap-
proach

A data analyst must often identily sim-
ilarities and differences between observa-
tions. For example, a biologist will cate-
gorize a newly discovered organism into a
known genera based on its similarities with
known species of the class and differences
with members of competing genera.  An
economist may recognize a trend in the mar-
ket as having occurred previously, and {ore-
cast a particular outcome based on these his-
torical similarities. The need to ‘cluster’ ob-
servations is critical in many fields, includ-
ing the biological and social sciences, where
it has spawned data analysis tools of numer-
ical tazonomy or cluster analysis (c.g., Jain
& Dubes [8]). Clustering methods have also
evolved in artificial intelligence (Al) and ma-
chine learning (e.g., Michalski & Stepp[11]).

Clustering systems automatically discover
categories of observations (events or objects)
that are similar along some dimension(s).
Once uncovered, these categories may sug-



gest features that characterize the observed
data and/or facilitate predictions about the
nature of future data. As in scientific en-
deavors, engineering disciplines can profit
{from clustering. For example, in diagnosis
an observation may be a set of symptoms
that collectively indicate a class of events
that share a common diagnosis. We believe
that discovered clusters can be used dynam-
ically for automated diagnosis, and that like
a data analyst, a system designer can use
clusters over simulated behavior to facilitate
design — in this case sensor placement.

3.1 CoBWEB: A sample clus-
tering system

A clustering system constructs a _classifica-
tion scheme over a set of observations. Fig-
ure 3 illustrates a classification tree con-
structed over five observations by a clus-
tering system called COBWEB. Each node
(class) in this tree represents a cluster of
observations. FEach cluster is represented
by the distribution of attribute values over
members of that node; this illustrative ex-
ample assumes that observations are rep-
resented by attributes of Size (small,
medium, large), Shape (square, sphere,
pyramid), and Color (blue, green, red).
Each leaf of the tree represents a cate-
gory covering a single observation; the prob-
ability of each value in a leaf, P(A; =
Vi;|1eafy), is 1.0 (i.e., present in the cor-
responding observation) or 0.0 (i.e., absent,
in which case it is not explicitly stored at
the node). The root of the tree covers all
observations, with base rate probabilities
P(A; = Vj|root) that reflect global value
distributions. In general, each node, Cj,
contains probabilities, P(A; = V;;|Cy), for
each attribute value observed in a member
of the node. In addition, the proportion of
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observations stored under each node relative
to the node’s parent is stored with the node.
For example, forty percent of the observa-
tions stored under the root are stored under
node Cy: P(Cijroot) = 0.4.

We will not describe the strategy used to
build this categorization hierarchy over ob-
servations since it is of limited relevance in
future discussion, and any of several strate-
gies can be used. However, it is important
to note that every clustering system relies on
a measure of cluster quality. In COBWEB’s
case this is a measure of category utility de-

rived from Gluck & Corter [3]:
CU(Cy) = P(Cy)x
[52: ; P(Ai = V;;|Cy) log, P(A; = Vi4|Ck)
— P(A; = V;)log, P(A; = Vj;)],

which rewards clusters that increase the cer-

tainty inherent in the attribute value dis-
tributions. The expression above is appro-
priate for nominally-valued (i.e., discrete,
unordered, finite) attributes, but several
variations on this basic scheme (Gennari,
Langley, & Fisher [7]; Reich & Fenves[14])
have been adapted to handle observations
described over ordinal and continuously-
valued attributes as well. The certainty-
maximizing measure is used recursively, first
to build a partition over the entire popula-
tion of observations, and then to subparti-
tion each of these initially-constructed clus-
ters, thus yielding a categorization hierar-
chy. Our particular interest in this process
is its ability to discover clusters over snap-
shots or instantaneous descriptions of sys-
tem simulations.

3.2 Discovering Fault Modes

We use COBWEB to discover categories of
fault conditions over system simulations.
This proceeds in much the same way as

O
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Figure 3: A classification tree constructed by COBWEB.

the simulation/induction procedure of Sec-
tion 2, except that in Step [4], the snapshots
are passed to our clustering system rather
than a supervised one. An example of a
categorizalion tree of discovered fault modes
for the thermal system is partially shown in
Figure 4. Each datum consists of inputs
and outputs, for all components, including
the single perturbed value (as described in
step [2]); that is, each datum is a snapshot
of the system. We do not show the proba-
bility distributions over all attribute values
for clusters, but simply label each low-level
node by a descriptor that conveys the fault-
mode meaning. Thus, low flow through the
radiator and a malfunction to the heater it-
self both result in high water temperatures
(Example 1), despite the fact that this be-
havior emerges for very different reasons.
Similarly, high flow through the pump ap-
pears somewhat similar to a second heater
malfunction: both result in low water tem-
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peratures (Example 2).

As with C4.5, the benefits of clustering
are at least two-fold. First, it is difficult
for engineers to completely design against
system faults in advance. Collectively, sim-
ulation and clustering identify fault models
that benefit design decision making. For ex-
ample, a faulty heater may overheat water in
the thermal system, but this behavior may
appear to be similar to, and thus be clus-
tered with, a radiator (heat exchanger) that
does not sufficiently cool water. Seccond, as
with C4.5, these ambiguities can alert ana-
lysts to place sensors that better distinguish
these conditions.

Again like C4.5, a COBWEB classifica-
tion tree can also facilitate fault diagnosis.
In particular, categories discovered through
clustering associate observable/sensor/test
features with component faults that lead to
the observed anomalies. We wish to clas-
sify an observable set of sensor readings to a



level of the classification tree where a rea-
sonably certain prediction of the underly-
ing fault can be made. However, a cat-
egorization and diagnosis procedure is less
clear with a COBWEB generated tree, since
it does not specify a single value that should
be sensed at any particular point as a deci-
sion tree does. Rather, we can exploit char-
acteristic attribute values of discovered cat-
egories o direct sensor testing. There are
a number of ways for identifying character-
istic (or normative) values, as described in
Fisher[6] and Reich & Fenves[14], but suffice
it to say that they are values that are typ-
ically true of category members, and typ-
ically discriminate the category’s members
from other, contrasting categories. Charac-
teristic values suggest tests that are likely
to discriminate the most promising paths of
the tree during classification: verification of
a characteristic value(s) suggests that the
associated path be followed, thus narrow-
ing the plausible faults that are consistent
with the known observables; failure to ob-
serve the expected value reduces the likeli-
hood that the associated path will lead to a
correct diagnosis.

The primary advantage of this strategy
over C4.5 is that the categorization tree
formed through clustering specifies a num-
ber of values at each node of the tree that
can be sensed in order to guide further cate-
gorization or diagnosis. The decision tree
structure is not generally as robust when
certain values cannot be reliably sensed be-
cause of noise. In contrast, the increased in-
formation redundancy of the COBWEB tree
is more robust in the face of noise, but re-
dundancy also comes with the correspond-
ing disadvantage that parameter compres-
sion is correspondingly lower.
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4 Attention Focusing

Consider the space between the decision tree
approach and the conceptual clustering ap-
proach as a continuum on feature structure.
In decision trees the structure is fixed during
training so that the order for feature testing
during prediction is rigid. There is one fea-
ture test at each node with leads to a node
al a deeper level (and another test).

In conceptual clustering there is no fea-
ture structure. To determine how to branch
into the concept hierarchy, one must test ev-
ery feature in the current node. In some
cases this could lead to a significant number
of tests (e.g., in our domain example from
Section 2).

Optimally, we would like to classify an
object or event in as few tests as possi-
ble with as few branches as possible. The
decision tree approach would seem to have
a tremendous advantage in classification of
problems with highly independent feature
spaces. However, when in a feature space
with specific dependencies, it would be nice
to cluster tests over these dependencies and
branch deeper into the tree with fewer tests.
One way in which we accomplish this is to
examine the salience of each feature within
each node, calculating what amounts to a
category utility for each feature within the
scope of its parent node.

The order of inspection for features in
each node is then relative to its salience.
The salience for a feature can be computed
in any number of ways. In the equation be-
low we show a general method for calculat-
ing salience based on standard deviation.

i P(Car — o
K

salience; =

where K is the number of classes, P(C})
is the probability of a particular class, and
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Figure 4: A partial classification tree of fault modes for the thermal model.

a;; is the standard deviation of the feature
within class k.

Using the notion of salience, an algorithm
can be derived that focuses attention on
the most informative features to test before
branching into a behavior hierarchy. The
following describes our algorithm for atten-
tion:

1. Select an unseen feature with probabil-
ity based on salience scores stored at
the parent.

2. Compute the salience of the selected
feature; store this new score at the par-
ent.

3. Compare the category utility score for
the best classification, z, based only on
features inspected so far.

4. Consider all remaining unseen features;
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if these were to match the second best
classification, would the score be better
than z7

5. If yes, goto step [1], otherwise ignore
remaining attributes and branch to new
node.

A problem closely associated with the cal-
culation of feature salience is the selection
of parametric measurements to ensure com-
plete and cosi-effective diagnosis. In ana-
lyzing a design for fault isolation we exam-
ine several additional factors, or properties,
that belong to the device used for sensing a
particular feature. A partial list of factors
governing sensor selection follows:

So, when looking at which salient features
to actually measure, an objective equation
to minimize cost and maximize feature cov-
erage must be designed. Below we offer a



- maintainability
- I/O performance

- response time
- launch weight

- criticality - power consumption

- reliability - procurement price

- repeatability - number of sensors

- accuracy - operating temperature

- resolution

- operating pressure

Table 1: Factors for sensor selection.

general form for such an objective equation:
miny_ w;f!

where Ziwi = la fi € {f1>" " ia"'sfn}
are n sensor factors, and f! =|| f; || is a nor-
malized value representing the sensor factor
within some range.

The following algorithm can be used for
selecting which salient features to measure
in a system under design.

1. Set threshold for objective equation.
2. Apply objective equation.
3. Collect sensor recommendations.

4. If parameter compression and fault
compression (from decision tree analy-
sis) arc exceeded, then adjust threshold,;
goto root-node and restart. Otherwise

branch and goto step [2].

5 Related Work

Work currently underway at JPL comple-
ments our research. JPL’s Al Group has
identified numerous factors that influence
optimal sensor placement in Chien, Doyle,
& de Mello[1], Chien, Doyle, & Rougette[2],
and Doyle & Fayyad[5]. Among these are
factors that relate to the diagnosticity of

sensors — i.e., the ability of sensed system

quantities to predict the presence and lo-
cation of faults. Roughly, diagnosticity is
measured by simulating a fault on a system
model, and then observing the changes to
various model quantities. Quantities that
differ most relative to their normal state
{(and possibly their value during other, com-
peting fault conditions), are judged good
predictors of that particular fault. In gen-
eral, the approach makes pairwise compar-
isons between the same quantities under
two different fault modes, and two different
quantities under identical fault conditions.

 The approach appears to be generally help-
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ful, but the utility of pairwise comparisons
is limited. In contrast, our two learning ap-
proaches seck patterns or rules across mul-
tiple dimensions (i.e., multiple fault modes,
and multiple sensed quantities) of system
behavioral snapshots simultaneously. This
approach can provide a more global perspec-
tive on system behavior, and makes certain
multidimensional patterns explicit to the de-
signer.

Furthermore, our approach to sensor
placement is guided by an explicit model
of the diagnostic process. This top-down
approach contrasts with JPL’s bottom-up
approach, which is primarily responsible
for enumerating a wider variety of fac-
tors that play a role in sensor placement.
Our primary focus on a single aspect (i.e.,
information-content) of system parameter
values that might act as good sensors is
a disadvantage of our approach relative to
JPL’s. However, we view the two ap-
proaches as complementary, and are pursu-
ing links between them.




6 Concluding Remarks

Our approach to sensor selection is distin-
guished from others in that it is guided by
an explicit model of diagnosis; this top-down
methodology promises principled criteria for
sensor placement. Although our models of
diagnosis are primarily useful for design, the
rule bases developed through clustering and
supervised methods could be used directly
for diagnosis as well — either autonomously
or by a human user. In this, we recognize the
importance of both rule-based and model-
based approaches as contrasted in Keller[9]
and Davis[4]. Our bias is that inductive ap-
proaches can never replace model-based ap-
proaches in any but the most trivial of ap-
plications. As Keller points out, ‘compiled’
knowledge is most helpful in diagnosing rel-
atively routine faults. To attempt a rule-
based approach that covers idiosyncratic
faults as well (i.e., achieves very high fault
compression) invites ‘overfitting’ (i.e., unac-
ceptably low accuracy and/or unacceptably
low parameter compression). The overfit-
ting phenomenon is well-known in machine
learning, but inductive approaches to com-
pilation for diagnosis have not traditionally
addressed the issue, as shown in Pearce[12].
Rather, an ideal tradeoff between coverage,
cost, and accuracy must only assume that a
certain diagnostic burden is taken on by the
compiled rule base. Our primary goal is to
limit, but not eliminate, the space of faults
that need be explored by probing, testing,
and simulation.
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ABSTRACT

This paper describes Harris Al research performed
on the Adaptive Link Reconfiguration (ALR)
study for Rome Lab, and focuses on the applica-
tion of constraint propagation to the problem of
link reconfiguration for the proposed space based
Strategic Defense System (SDS) Brilliant Pebbles
(BP) communications system. According to the
concept of operations at the time of the study,
Laser communications will exist between BP’s and
to ground entry points. Long-term links typical of
RF transmission will not exist. This study
addressed an initial implementation of BP’s based
on the Global Protection Against Limited Strikes
(GPALS) SDI mission. The number of satellites
and rings studied was representative of this prob-
lem.

An orbital dynamics program was used to generate
line-of-site data for the modeled architecture. This
was input into a discrete event simulation imple-
mented in the Harris developed COnstraint Propa-
gation Expert System (COPES) Shel] developed
initially on the Rome Lab BM/C? study. Using a
model of the network and several heuristics, the
COPES shell was used to develop the Heuristic
Adaptive Link Ordering(HALO) Algorithm to
rank and order potential laser links according to
probability of communication. A reduced set of
links based on this ranking would then be used by
a routing algorithm to select the next hop.

This paper includes an overview of Constraint Pro-
pagation as an Artificial Intelligence technique and
its embodiment in the COPES shell. It describes
the design and implementation of both the simula-
tion of the GPALS BP network and the HALO
algorithm in COPES. This is described using a
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Data Flow Diagram, State Transition Diagrams,
and Structured English PDL. It describes a laser
communications model and the heuristics involved
in rank-ordering the potential communication
links. The generation of simulation data is
described along with its interface via COPES to
the Harris developed ViewNet graphical tool for
visual analysis of communications networks. Con-
clusions are presented, including a graphical
analysis of results depicting the ordered set of links
versus the set of all possible links based on the
computed Bit Error Rate(BER).

Finally, future research is discussed which includes
enhancements to the HALO algorithm, network
simulation, and the addition of an intelligent rout-
ing algorithm for BP.

1. SDI BRILLIANT PEBBLES COMMUNI-
CATIONS

During the course of the ALR program the
space-based architecture was changed to be based
on the concept of "Brilliant Pebbles (BP)". Each
BP consists of a weapon system, sensor system,
and a communications system. The focus of the
ALR was on the communications system, as is that
of this paper.

1.1. LINK RECONFIGURATION FOR BRIL-
LIANT PEBBLES

The BP network consists of many platforms,
each of which can receive simultaneously from a
large number of neighbors, but which can only
transmit via a laser to one other platform at a time.

This work was funded by the U.S. Air Force Rome
Laboratory under contract number F30602-89-D-0096



It also runs in an open-loop fashion using simplex
links, where a platform calculates the position of
other platforms based on orbital predictions and
periodic position updates. It then points at the
selected platform only for the duration of a mes-
sage. A link is never established in the manner of
a typical RF architecture. There is, however, the
possibility that pebbles will not recalculate links
on a per message basis. Although the study does
not address this possibility, the COPES implemen-
tation of the HALO Algorithm could be modified
in a straightforward manner to accommodate such
a change.

Given the large number of potential links
from any node, a routing algorithm should not
have to consider all potential nodes every time a
message is sent. To work effectively it should
only have to consider a subset of the links. This
approach requires a database to be maintained
which can effectively rate links according 1o con-
straints such as, longevity of LOS, range, probabil-
ity of accurate position data for other nodes,
beam-width limitations, probability of jamming,
‘etc. Maintaining such an intelligent data base can
significantly speed up the routing algorithm, and
make it more robust in the face of enemy actions.
The concept of link reconfiguration was redefined
under the ALR program to mean the process of
creating and maintaining such a database of rated
links.

1.2. GLOBAL PROTECTION AGAINST
LIMITED STRIKES (GPALS)

During the ALR study we simulated an ini-
tial implementation of the Brilliant Pebbles SDI
architecture based on the Midcourse and Terminal
Tier (MATTR) and Global Protection Against

‘Limited Strikes (GPALS) studies. The SDI archi- -

tecture has been radically altered since the BM/C3
study, (Crone, Julich, 1990) with the incorporation
of Brilliant Eyes(BE), Brilliant Pebbles(BZ)

the Endo / Exoatmospheric Interceptors (E°T). In
addition, the concept of Battle Management has
evolved, including both the location of Battle
Managers and modes of operation. The MATTR
study defined a BP-based SDI architecture which
includes the midcourse and terminal phases. The
GPALS study defined requirements for an SDI sys-
tem which addresses a more limited size strike
which may originate from any location. The
GPALS architecture represents an initial but
scaled-down version of an eventual phase 1 archi-
tecture, with less BPs and BEs, and without the
GSTS system.
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A significant difference in the mission of
GPALS (as contrasted with the full scale SDS) is
indicated by the name. First, the system provides
Global Protection. The space elements of the sys-
tem are intended to support defense both within
CONUS and in overseas theaters. Advantages can
be obtained by using a common communications
architecture for the overseas theater and the
CONUS implementation. Second, the term Pro-
tection suggests a different mission from the earlier
SDIO Phase 1 architecture. The Phase 1 architec-
ture had a primary mission of attack deterrence.
Providing protection (zero leakage of attacking
missiles) indicates a requirement for increased reli-
ability and less probabilistic focus. This affects
the communication requirements by placing a
higher emphasis upon guaranteed delivery of mes-
sages. Third, the term Limited Strike indicates a
smaller threat than the massive strikes considered
in the Phase 1 (full scale) architecture.

The GPALS architecture is more distributed
than previous architectures, with Battle Manage-
ment being distributed along both regional and ele-
ment lines. Weapon Target Assignments (WTA’s)
are generated much closer to the weapons. Control
of the battle is hierarchical, however, through the
use of Preplanned Response Options (PROs),
Defense Employment Opportunities (DEOs), and
Weapons Release Authority (WRA).

Figure 1 provides a view of the
MATTR/GPALS architecture and connectivity.
The legend describes the various elements
involved in the battle. Control of the system is
hierarchical beginning at the Command Center
(CC) and proceeding through Regional Operations
Centers (ROCs) and Element Operations Centers
(EOCs).

In GPALS, battle management is distributed
and co-located with sensor systems such as Brilli-
ant Eyes(BE), Brilliant Pebbles(BP) and Ground
Based Radars(GBRs). The ALR study was pri-
marily concerned with track reports originating
with BPs that are filtered by merge nodes as they

are passed toward a GEP.

2." CONSTRAINT-BASED ALGORITHM
DEVELOPMENT -

Given the requirements of the GPALS simu-
lation and the need to develop a heuristic algorithm
to maintain a reduced set of potential links, con-
straint propagation as embodied in the COPES
shell was chosen to accomplish both tasks. The
application of constraint propagation to intelligent
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Figure 1 - Space-based GPALS Communications Architecture

problem solving was begun during the BM/C> pro-
gram with Rome Lab.That effort resulted in the
initial development of the COPES shell.(Crone,
Julich, 1990) COPES was subsequently used in
developing a distributed intelligent network
manager in cooperation with the C Language
Integrated Production System (CLIPS) rule-based
language under the Distributed Intelligent Network
Control (DINC) program for the U.S Amy Stra-
tegic Defense Command. (Crone, Julich, 1991)
This research was performed in cooperation with
the Professor Ramamoorthy and students at the
University of California Berkeley. The subject of
this paper is the work done in intelligent link
assignment for the SDI laser communications
space network.

Since this work, we have used COPES 1o
implement a version of the new Arpanet Shortest
Path First(SPF) algorithm (McQuillan, 1980), a
version of simulated annealing using COPES for
the traveling salesman problem as a precursor {o
the problem of Weapon Target Assignment under
Harris research, and have developed a neural net-

work development tool. The simulated annealing
technique utilized the discrete event scheduling
capability of COPES to produce solutions to a 95
city problem which were consistently within 94%
of the optimum solution. The COPES developed
neural network tool is based on the Parallel Distri-
buted Processing Project. (McClelland, 1988). In
each case, as in all COPES development, the prob-
lem is represented in a distributed manner without
a central executive process. In addition, the solu-
tion is distributed throughout the object database.

~ For instance, in the case of the SPF algorithm, the
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shortest "next hop" to a particular node is main-
tained in the object representing the that node, as
opposed to being maintained in a centralized rout-
ing table.

The remainder of this section gives the prin-
ciples of constraint propagation in the context of
Artificial Intelligence; its implementation in the
COPES shell; and the current status of the shell as
a basis of implementation for the HALO algo-
rithm.



2.1. BACKGROUND

2.1.1. Traditional Search Techniques

A variety of search techniques exist, in the
area of combinatorial minimization with an objec-
tive function to be minimized. (Press 1986) We
have investigated some of these in the similarly
complex domain of planning and have found them
to be inadequate for knowledge-based problems.
In particular the Simplex Method is a linear pro-
gramming technique which can maximize a func-
tion subject to a set of constraints. This was found
to be too slow and unable to provide partial
schedules if all constraints could not be met. The
Constrained Minimization technique in which a
cost function is to be minimized subject to a sct of
constraints depends on the function being continu-
ously differentiable. In this case standard tech-
niques such as Penalty Function methods, and
Conjugate Gradient methods could be used.
Because of the discrete nature of planning and link
assignment, such a function cannot be found. The
concept of a heuristic cost function can be useful
using a Al approach, however. Used in this way
the function is used to evaluate potential link
assignments and guide further refinement.

The method of simulated annealing is a tech-
nique which for practical purposes has solved the
"traveling salesman” problem. It has been used
successfully for designing complex integrated cir-
cuits to minimize interference among connecting
wires in the arrangement of several hundred
thousand circuit elements on a silicon substrate.
~These are both applications of combinatorial
minimization. There is an objective function to be
minimized over a discrete but very large
configuration space. The method of simulated
annealing based on the Metropolis algorithm
always takes a downhill step while sometimes tak-
ing an uphill step thus avoiding being trapped in a
local minima. (Press, 1986) It is applicable in
cases where a simple measure of an objective func-
tion (analog of energy) can be defined. For most
complex problems this cannot be defined by one
function.

2.1.2. Artificial Intelligence

State space search is used in Al to move
from an initial state representation of the
problem(such as all potential links for each CV
platform) to a goal state by the application of
knowledge-based operators. (Rich, 1983) Given
the nature of the initial and goal states, this search

can be combinatorial. Algorithmic techniques
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exist such as branch-and-bound, and A* to reduce
the search for some problems, but are inadequate
for knowledge-rich problems. In this class of
problem the cognitive activity of an intelligent
agent involves two types of search: (1) knowledge
search, that is, which operator to apply next, and
(2) problem-space search, that is, search within the
problem space for a goal state. (Gupta, 1983)
Pruning of both spaces is crucial to reducing the
search. In order to solve many hard problems
efficiently, it is often necessary to to construct a
control structure that is no longer guaranteed to
find the best answer, but that will almost always
find a very good answer. This is called heuristic
search because knowledge is used to guide the
search process. Heuristic search can be applied
implicitly via the patten matching of the rules
against the problem-space data which takes place
on each cycle in a production system, or explicitly
via the weighting of constraints as in constraint-
directed search in the ISIS scheduling system.
(Fox, 1983) Blackboard Architectures address
many of the issues of state space search and have
been suggested as a control mechanism for prob-
lem solving. (Hayes-Roth, 1983)

Systems which take advantage of a great deal
of knowledge are referred to as "Expert Systems”,
and have been shown to provide problem-solving
computer programs that can reach a level of perfor-
mance comparable to that of a human expert in
specialized problem domains. (Barr, 1982)
(Gevarter, 1983) They are in fact a form of qualita-
tive model of both the problem space and the
human problem solver. (Clancey, 1986) Expert
Systems are characterized by the separation of
data, rules(knowledge), and control. (Crone, 1985)
They are usually rule-based, and due to the often
enommous amount of pattern matching in rule-
based systems, have not fared well in real-time
applications. Some speed-up is predicted via
parallel processing. (Gupta, 1983) Given the often
autonomous intelligent activity which would be
required in the link assignment problem, Expert
Systems will be required, so research must uncover
faster inferencing mechanisms. Rather than con-
sidering all data and knowledge in every inferenc-
ing cycle a more "object-oriented” (Stefik, 1986)
knowledge representation is suggested. This is
especially appropriate in cases where the problem
space is in the form of a network with each node
being connected to surrounding neighbors. The
approach taken by this research is to use constraint
propagation as the method of inference.



2.1.3. Constraint Propagation

An architecture which has been used with
varying degrees of success, in physical reasoning,
temporal reasoning, and spatial reasoning is to
represent the knowledge base as a constraint net-
work which performs inference by propagating
labels. (Davis, 1987) These labels represent poten-
tial candidate values for nodes in the network.

2.1.3.1. Constraint Networks

A constraint network is a declarative struc-
ture which expresses relations among parameters.
It consists of a number of nodes connected by
"constraints”. (Davis, 1987) A node represents an
object which contains state and which is
represented by the value of the instance variables
of the object. A constraint represents a relation
among the instance variables of the node and those
of other objects it connects. As such, it is usually
local in scope, but can connect all nodes in the casc
of a global constraint such as a heuristic weighting
function. Examples of different applications of
constraint propagation ar¢ numerous. (Crone, Jul-
ich, 1987,1990,1991) (Davis, 1983) (Fox, 1983)
Forward inference on constraint networks, called
assimilation, is usually done using constraint pro-
pagation, shown in algorithm 1. In constraint pro-
pagation, information is deduced from a local
group of constraints and nodes, and is recorded as
a change in the network. Further deductions will
make use of these changes to make further
changes. Thus, the consequences of each datum
gradually spread throughout the network.

Algorithm 1. - Constraint propagation
repeat
-take some small group of constraints and nodes in
some connected section of the network,
-update the information in this section of the network,
given the information in the constraints and the nodes;
until no more updating occurs (the network is quiescent)
ot some other lermination condition is reached.

In its most basic form, a set of potential labels for
each node’s instance variables are given, and then
teduced based on constraint propagation to a
unique solution or an inconsistent state. o

A greater depth of knowledge concerning a
particular system can be expressed in terms of con-
straints than is possible in a rule-based system
alone. Model-based reasoning is a common appli-
cation of constraint propagation where expected
performance of a system is described through a set
of constraints, which may contain mathematical
models. Deviation from this behavior or observed
similarities to expected failure modes can trigger

corrective action or alter resource planning. This
type of diagnostics is known as specification based
as opposed to the symptom based approach used in
rule-based diagnostic expert systems.

Unlike commercial Al shells such as ART,
constraint propagation takes advantage of locality
of information. Some of its valuable properties
are:

Forms a close analogy for systems in which phy-
sical effects propagale across connections
between components.

Constraint propagation consists of a simple con-
trol structure similar to a rule-based inference
engine.

Degrades well under time limitations; interrupt-
ing the process in the middle gives useful infor-
mation already deduced.

With assimilation, it is easily implemented in
parallel, since updating can be performed all
over the network simultaneously.

Is easily expanded by adding constraints incre-
mentally to the network.

2.1.3.2. Inferencing in COPES

In assimilation, the instance variable values
for each node are represented by a set of labels
which must be consistent with constraints relating
the instance variable to those of other nodes. The
general form of refinement is given by the follow-
ing definition: Definition 1. Let C be a constraint
onnodes X,, ... X, LetS,be thelabel set for X..
Then

REFINE(C.XJ) = [aje 5, | 3 (ae S,i=1,... k,i#])
C ..,aj,,..ak).

That is, REFINE(C, XJ.) is the set of values for Xj
which is consistent with the constraint C and with
all the labels S,. A value a is in REFINE(C, Xj) if
a isin §, and it is part of some k-tuple a,, . . . ,3,
which satisfies C and all the S;.

Applying the updating function REFINE
within the constraint propagation control structure

"

- given in Algorithm 1, gives the Waltz algorithm.
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(Waltz, 1975) The Waltz algorithm applies con-
straints to nodes until no more changes occur (the
network has reached quiescence). Algorithm 2is
an efficient implementation of the Waltz algorithm
which served as the original basis for this research
with many additions being added over time.



Algorithm 2. - Waltz Algorithm

/* The set
S, is the current label set of quantity X, */

REVISE refines all the parameters X .-

X, of a given

constraint C, and returns the set of all parameters
whose set was changed.

procedure REVISE(C(XI v X0
begin CHANGED ¢ o
for each argument X do
begin § «- RE (C, X)
if $ = 2 then halt
elseif S # S, then
begin S &« §
add Xi to CHANGED
end
end
return CHANGED
end

procedure WALTZ
begin Q « a queue of all constraints
while Q # 2 do
begin remove constraint C from Q
CHANGED ¢ REVISE(C)
for each X, in CHANGED do
for each constraint C’ # C which has X, inits
domain do
add C’ 10 Q
end
end

2.2. APPROACH

2.2.1. Development of COPES Shell

In order to effectively apply Waliz's algo-
rithm to a network type of problem we designed
and implemented the COPES Shell at Harris to
merge the concepts of constraint propagation as a
method of inference, with object-oriented pro-
gramming as a method of representation. Unlike
most applications of constraint-based reasoning,
the use of COPES provides a solution which is
casily created and updated. The representation
scheme allows the hierarchical definition of com-
plex objects called classes which contain state
information in the form of instance variables, and
links to constraints which are applied to them. For
some problems, constraints are inadequate to pro-
duce a unique state. We added a searching
mechanism to the shell which allows back-tracking
with or without selective pruning. An instance

variable defined for a class is really represented by

a complex data structure which includes its type,
name, parent, etc. This allows generic functions to

be developed where variable type is dynamically
bound. This is similar to a Lisp/Flavors approach.
Among the objectives of this work was to build the
shell using the language "C" on a Unix environ-
ment such as the Harris HCX-9, and to emphasize
run-time speed. Since a large part of the
knowledge base is programmed directly in "C",
and locality of information is considered; COPES
offers an execution time advantage over rule-based
Systems.

The building of a tool to support Expert Sys-
tem development is compounded by the need to
experiment with the tool during development to
expose limitations and problems. The flexibility
required for Al tool development leads one to fol-
low the principles of object-oriented design, where
possible. At Harris we have built object-oriented
versions of both C and Ada to make implementa-
tion possible in a conventional environment.
(Crone, Julich, 1987) (Simonian, Crone, 1989) For
the sake of run-time speed, we did not use either
for the development of COPES, but did follow
many of the principles of object-oriented program-
ming.

Object-oriented design methodologies typi-
cally start with an emphasis on the data represen-
tation. In order to support Al design, we added
extensions to Entity-Relationship (E-R) diagrams
which are typically used for database design.
(Chen, 1976) To describe the software design, we
modificd the Jackson Structured Design(JSD) pro-
cess model.  (Cameron, 1986) The AI and
software designs of COPES are described in detail
elsewhere. (Crone, Julich, 1990)

222, KndWlé&ge Representétion in COPES

Knowledge takes two forms in COPES: (1)
the constraint network, and (2) the constraint func-
tions. The application of the constraints to the net-
work is the function of the shell.

The creation of such a constraint network
database is done either interactively for small prob-
lems or is read from a Unix file created by a C pro-
gram. In most problems amenable to solution via
constraint propagation, a network is often homo-
geneous with identical constraint relationships
between neighboring nodes. We are currently
developing a "class" language and "instantiation"
commands to make the creation of such a network
easier and more dynamic.



2.2.3. State of the COPES Shell

The following is a description of the current state
of development of the COPES shell and some of
the problems to which it has been applied.

e Hierarchical knowledge representation scheme
using object oriented approach

— Metaclass, classes, subclasses
— Instance variables to define object state
— (lass constraints (definition and instances)

Waltz constraint propagation based on represen-
tation scheme.

State saving and Restoring callable by constraint
routines

Abstract variable types with generic access
methods

Container variable types which support queues,
stacks, sets, etc.

Container variables also support distributed
problem solving via TCP/IP sockets.

Scheduled variable modification for discrete
event simulation including cancellation of
events.

Variable access methods such as PUT, GET,
WRITE, etc. either direct or "BY_NAME",
where the class object and variable name is
given.

Database features to list class structure, con-
straint bindings, and error messages during crea-
tion

A variety of tracing features for debugging
Problems to which COPES has been Applied

Distributed Intelligent Network Manage-
ment

Distributed Network Emulation

Distributed Heuristic Algorithms

Simulated Annealing WTA Research
model-based diagnostics

Modeling Neural Networks

— Distributed algorithms: A*, N-queens, SPF,
TSP

— Dataflow-based discrete event simulation
for SDI
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3. HALO ALGORITHM USING COPES

This section describes the HALO Algorithm
and its implementation using the COPES shell.
We first introduce the Adaptive Link problem and
develop a model to analyze it. Then we discuss the
heuristics of the algorithm and consider their
relevance to the actual Brilliant Pebbles scenario.
Next, we discuss how the model is implemented
using the COPES shell as a simulator. Finally, we
discuss some results obtained from running the
simulator on a typical scenario for the Brilliant
Pebbles architecture.

3.1. HALO ALGORITHM DEFINITION

This section develops a model describing the
HALO Algorithm in terms of objects and defines
how these objects interact with one another. This
model is defined with an Object Oriented structure
which lends itself well to implementation in
COPES. The section concludes with a definition
of the heuristics of the algorithm.

3.1.1. Adaptive Link Problem

The HALO Algorithm considers a Brilliant
Pebbles architecture consisting of a constellation
(or constellations) of satellites in low earth orbit
communicating with each other using laser links.
The algorithm attempts to reduce the work of a
routing algorithm by generating a ranked list of
links ordered by the best to worst probability of
successful transmission. The algorithm generates
this optimally ordered list by applying a set of
heuristics to the list of links such that in most cases
the router would only have to consider a small set
of these optimal links to make its routing decision.
This is important in a laser based communication
network where a large number of highly dynamic
potential links exist.

Figure 2 shows a model of the data flow and
objects used to implement both the HALO Algo-
rithm and a simulation of a BP scenario. This
model represents a single instance of the HALO
algorithm running on one BP(referred to in this
discussion as the reference node). In this phase we
do not consider the router, consequently we are
only concemed with the point of view of one peb-
ble and how it orders its optimal set of links.
Thus, Figure 2 does not consider any routing
issues. In the rest of this section we develop the
model shown in Figure 2 and describe the algo-
rithm as a set of heuristics (or constraints), a set of
objects, and the relation between them.
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Figure 2 - HALO Data Flow

The data flow diagram in Figure 2 shows the
main objects in the HALO Algorithm and the
communications between these objects. The object
BP Node describes parameters common to each
BP in the constellation. It contains information
such as the position of each satellite, its error term,
and other instance information. This object is

cate an object viewing the data in other objects,
e.g. Ref Node BP accesses link status from BP
node 1.

The HALO Algorithm uses a set of heuris-
tics which govemn how the algorithm sorts the list
of possible links. ’I'hese heunsncs are described

7below SR -

replicated many times within each BP which runs

this algorithm (it is the reference node’s view of
other BPs in the network). The object Ref Node
BP describes information unique to the reference
node. It contains the ranked list of "links", some
state information, and some information about the
constellation. The object Central Simulator is
not a physical object in the BP scenario, but con-
tains data associated with the overall HALO algo-
rithm and helps control the interactions between
objects. Tt govemns the operations of the simulation
such as reading the orbital dynamics file, and start-
ing and stopping the simulator.

The object’

Display Process also is not a physical object in the

BP scenario but is an entity which monitors the
algorithm and simulator, and reports its progress
for display and analysis. The lines with arrows
show the communication between objects, the
solid lines indicate actual messages being sent to
the appropriate object(algorithmic communication,
not to be confused with actual communication
between physical BPs), and the dashed lines indi-
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"o LOS - This heuristic checks whether a BP is in
LOS of the reference BP. For the purposes of
the COPES implementation, this data is
precomputed using an orbital dynamics package
to model the satellite motion and visibility.

e Velocity - This heuristic checks whether the
relative velocity between two BPs communicat-
ing with one another would cause a Doppler
shift impairing the laser communications. An
analysis of the need for this heuristic is
described later in this section.

‘e Lasercomm Probability - This heuristic deter-

‘mines the probability of a successful communi-
cation between two BPs. It models the effects
of pointing error, position uncertainty between
pebbles, and other laser parameters.

e Position Error - This heuristic allows the posi-
tion error to be corrected at a predetermined
rate. Currently, the position error updates
(which would normally be received from other
BPs) are randomly scheduled with a period of



one satellite orbit.

These heuristics are imposed by the HALO
algorithm and do not necessarily map into unique
COPES constraints. Each heuristic defined above
is developed further in the remainder of this sec-
tion. In the next section we develop the COPES
constraints which implement these heuristics.

3.1.2. Line Of Sight Heuristic

The Line Of Sight (LOS) heuristic deter-
mines whether a reference node can communicate
with a given BP. This simply tests whether the
specified BP is physically in LOS with the refer-
ence node. If it is not, then no further considera-
tion is given to the BP as a potential link.

3.1.3. Velocity Heuristic

We now consider the requirements for a
velocity constraint. The relative motion of two
BPs may affect the communications between
themselves due to the Doppler shift of the laser-
beam. The maximum tolerable frequency shift of
the laserbeam is on the order of 1 nm for the laser
comm systems considered in the brilliant pebbles
architecture. The Doppler shift of light between
two bodies is defined by the following equation:

Vv =(1-2)
c

u = relative velocity of BPs.
v = frequency of light source at rest.
v’ = frequency of light due to u.

This equation is valid if 2«
c

In the brilliant pebbles simulations at typical
satellite constellation altitudes the maximum rela-
tive velocity of BPs is about 7.5 km/s. Substituting
the appropriate values into the above equation, the
Doppler shift that the BPs see is approximately
20 pm. This is two orders of magnitude less than
the laser design constraint of 1 nm. Thus, this con-
straint appears to be of limited concem in the ini-
tial analysis. There has been some discussion in
the SDI community concerning a potential prob-
lem with link acquisition based on relative velo-
city. This remains an area of research.

67

3.1.4. Laser Probability Heuristic

The laser probability heuristic is a computa-
tion of the probability of successful reception of a
laser transmission from the reference BP to a
designated source BP. The probability is com-
puted from a model of the laser communication
link. This model is for a direct-detection receiver
using multimode pulse position modulation (PPM)
signaling and is currently being studied for the
Brilliant Pebbles architecture.

The laser model defined for the HALO Algo-
rithm has only one degree of freedom, the position
error (described below). The model assumes fixed
values for other parameters of the laser model. In
addition controlling the transmitter beamwidth
yields a better probability of successful communi-
cation over a wider range of distance between
source and destination. The model assumes the
beamwidth can vary from 2.5 mRAD to 25 mRAD.
The model simulates this variance by keeping the
following relationship:

0,R =K

where )
8, = receiver beamwidth.

R = receiver range.

K = constant.

The range of distances between the reference node
and a designated node varies over the interval
(200,4500) km. Thus, the laser model optimally
sets its 9, over this interval and then computes the
probability of successful communication using the
position uncertainty.

3.1.5. Position Error Heuristic

Each BP maintains a database of the current
positions of other BPs in the network used for
routing and link selection. As time passes, each BP
calculates predicted position of the other BP’s.
Due to the relative infrequency of position updates,
there is error associated with these predictions.
This position update message has an inherent error
associated with it as well.

In the adaptive link reconfiguration simula-
tions, we model a position error as a growing
sphere around the BP over time. Thus, we need a
rate term to grow this sphere as the simulation
progresses. The worst rate would result from the
BP being at a less or greater orbit altitude than it is



supposed to be. This would cause the orbit period
to be faster or slower, respectively, than a BP
would predict it to be. Thus we will assume that
the position update message has an error of a cer-
tain amount d which is in a direction greater or less
than the actual orbit radius.

Assuming a spherical earth, the error will
grow at a linear rate as computed below:

R'=R-d

ve(t) =v(R-d) - v(R)

v(r)= '\/—%_

1 1
Eopin =1t \]i‘l—-

7w

where:

d is the error of the global positioning system.
R is the perceived radius of the BP orbit.
R’ is the actual radius of the BP orbit.
v,(t) is the error velocity.
E,; 18 the error rate in m/s.
p is the gravitation parameter in m?*/s?

The adaptive link simulations assume the
positioning system used in the BP architecture is
accurate to 100 m. This causes the worst possible
position error rate of 0.055m/s at an altitude of
550 km. This value is used in the simulations run.
The simulator also assumes that the position
updates occur at a rate of once per orbit.

3.2. COPES IMPLEMENTATION

The model of Figure 2 presents a set of
objects which describe the HALO Algorithm.
These objects are described as classes in COPES.
Each class defines the state information of a partic-
ular object in a model. There may be multiple
instances of a class such as the node object in the
model which is duplicated for each physical node
in the system. A constraint function describes the
interactions between the defined objects. A con-
straint is bound to variables in a given class
instance. A constraint "propagates” or “fires"
when a variable in a class instance that the con-
straint is bound to changes. When the constraint
"fires" it observes the state of the objects it is
bound to and changes the states of these objects
appropnately A constraint may be bound to a
variable in two ways. The first way is for the con-
straint to "fire" when the variable changes. The
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second way is for the constraint to ignore changes
to a variable but access this variable when the con-
straint does "fire" from some other binding.

The HALO Algorithm is defined as a set of
classes and constraints. The classes defined below
represent the objects of Figure 2 and some addi-
tional classes required for the COPES shell and to
support the simulator for the HALO algorithm.
The classes are:

Ref Node : This class contains information unique
to the reference node above what is
necessary to describe a general node.

This class contains information unique
to each node.

This class contains information about
the laser link between the reference
node and the node with which this link
is associated.

This class contains file status and
descriptor information used by the
central simulator.

This class contains file descriptors and
flags used by the display object.
This class contains simulation parame-
ters and flags to which every con-
straint has access.

In developing the algorithm, we define state
transition diagrams which describe the threads of
the overall algorithm flow. A sample of one of the
state transition diagrams is shown for the central
simulator (Figure 3). The Central Simulator is
responsible for managing the simulation and read-
ing the new position and velocity (p&v) parame-
ters from the orbital dynamic file. It loads the p&v
information into each node, waits for the current
cycle to complete and then starts the next cycle.
When the simulation is complete, the central simu-
lator causes the COPES shell to terminate. Refer-
ring back to Figure 2, a Node performs three tasks.
During the initialization cycle, it schedules a posi-
tion update message to correct the position error
term. During a normal cycle it receives and inter-
prets position update messages and it responds to
new position and velocity parameters. The refer-
ence node shown in Figure 2 is the node on which
the software is considered to be running in the
simulation. In a real system each node would be a
reference node. The reference node manages the
list of ranked links. As each node updates its link
status parameters, the reference node updates the
list of ranked links. When all links have been
updated in the current cycle, the reference node

Node :

Link :

File In :

Display :

GLOBAL :



indicates it has an updated links list which starts
the display process. The Display Process monitors
the simulation then prints out simulation statistics
and formats the ranked list for viewing with the
ViewNet program at the end of each cycle.

A sample of this output is given later.

INIT

DISPLAY 1O WATE
RANKED LST EXIT SIMULATION

DISPLAY DONE l

Figure 3 - Central Simulator STD

The constraints are derived from the heuris-
tics (described in the previous section) coupled
with the state transition diagrams. User defined
constraints are detailed in the remaining part of
this section. User constraints are defined using
structured english PDL.

The first constraint is the read_pos con-
straint. This constraint performs much of the func-
tion of the Central Simulator object. It is responsi-
ble for controlling the simulations aspects of the
COPES algorithm implementation, and reading
the orbital dynamics file for the current computed
satellite positions and LOS data.

This constraint has one instance and schedules
itself to fire once each cycle. This constraint is
bound to the instance of the class file_in. This
class has a state variable, run_file_in, which the
read_pos constraint schedules to change in the
future. This allows the constraint to fire itself to
run at the beginning of each simulation time cycle
to read the current satellite position data. In addi-
tion to acting as the Central Simulator, the
read_pos constraint represents a BP reference node
computing the position, velocity, and LOS of each
node in the constellation. It takes advantage of the
discrete event scheduling capabilities of COPES
to move the simulation, link ranking, and display
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through discrete phases. In this manner objects
like the Display do not have to signal the Central
Simulator when they are done. Their inactivity
(lack of constraint propagation changes in the net-
work) causes the removal of the next change from
the schedule queue and constraint propagation con-
tinues in the next phase.

The next constraint is the pos_update con-
straint. This constraint is concerned with schedul-
ing and receiving position update messages. It per-
forms two functions. It initially schedules the ran-
dom position update for each node. It then
responds to the position update messages which
cause the node to reset its position uncertainty.
This constraint represents a reference node receiv-
ing a position update message from another node
in the constellation. This message provides the
actual position of the satellite which the reference
node uses to reset its notion of that satellites posi-
tion. A separate pos_update constraint is bound to
each node instance in the BP scenario.

The next constraint is the Nodel constraint.
This constraint models the cumulative effect of the
position error. It gets fired when a p&v recompu-
tation event occurs (triggered by the Central Simu-
lator) which causes the node to increase its posi-
tion uncertainty. A separate instance of this con-
straint is bound to each class node instance.

The next constraint is the comm_ber con-
straint. This constraint fires when the position
uncertainty parameter of a given node is modified.
It then (if in LOS, meets the Doppler heuristic, and
is within range) computes the bit error rate (BER)
of successful laser communication. A short Struc-
tured English PDL is shown for this constraint is
shown below as a design example.

comm_ber ()

{

when new position uncertainty parameters for this node
for each potential link

if node in LOS and (Doppler and range thresholds valid) then

compute new ber for successful tx (src to dest).
store new ber in link.
set link flag indicating to add/update link in ranked list.
else if link currently in ranked list then
set link flag indicating to remove link from ranked list.
endif
endfor
endwhen

}

It sets this BER in the link instance for this node.
A separate instance of this constraint is bound to
each class nodel instance.



The next constraint is the rank_links con-
straint. This constraint fires each time a node
modifies its link quality parameters and then ranks
all the links according to these parameters. When
all links have been determined, the constraint
sends the ranked list out to the display constraint.
A separate instance of this constraint is bound to
the each class node.

The last constraint is the display constraint.
This constraint implements the display object. Its
purpose is to take the ranked list of links from the
reference node object and format it for display in
ViewNet. Additionally, it outputs some statistics
of the simulation for post analysis. A single
instance of this constraint is bound to the class
Display Process.

Finally, Harris developed constraint binding
diagrams are produced for each constraint to show
the dynamic bindings which link constraints to
class variables. Figure 4 shows an example of a
constraint binding diagram for the comm_ber con-
straint. This diagram is useful to understand how
the constraints interact with the object instances.
An instance of the comm_ber constraint is created
for each node and link object as it is viewed from
the reference node. An instance of the constraint
fires when the position error of the node instance to
which it is bound is modified. This causes the
given node object to reset the concept of bit error
rate for the link from the node to the reference
node. The remaining variables are bound as access
only and do not cause the comm_ber constraint to
fire. An access only variable is indicated in the
constraint binding diagram by placing an "A" on
the end of the line linking the constraint to the

variable. Class: node (instance for reference node)
nodeid

posilion
position error

posiion update nin
link pd
link status

Class: node {other instances)
nodeid

position

posion error

posilion update run

A link status

Constraint:
comm_ber

Class:link (one instance bound to every node)
i,oe lgpoims 1o this node instance)

A relative velocity

A line of sight um

A e gy

Figure 4 - Comm_ber Binding Diagram

The classes and constraints discussed in this
section define the COPES model for the HALO
Algorithm and simulator. In the next section we
discuss the actual BP scenario used to test this
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Algorithm and the results of those simulations.

3.3. SIMULATION DATA FOR THE ADAP-
TIVE LINK ALGORITHM

This section presents the simulations run for
the HALO Algorithm. The Adaptive Link simula-
tor provides two types of output for analysis. The
first is a visual display using the ViewNet tool
developed at Harris. The second is a plot of the
average ber rate of the top portion of the ranked
list versus the ber of all possible links.

The Brilliant Pebble scenario used to test the
algorithm is an unclassified network which is
closer in size to a GPALS architecture. It consists
of a single constellation of satellites at an altitude
of 550 km and an inclination of 60°. The constella-
tion contains 21 rings of 20 pebbles per ring. Only
one constellation is used since the problem is not
changed by multiple constellations and the imple-
mentation of the simulator is simplified. The
simulation described above runs for a period of one
earth day. This provides time for approximately
15 satellite orbits. The random position update
messages are issued once per orbit.

The ViewNet graphical tool provides the
capability to visualize the Adaptive Link algorithm
in operation to gain an intuitive understanding of
how it works. Figure 5 shows a snapshot in time
of the ViewNet display. This figure shows the
satellites in orbit around the earth, the reference

node with the eight "best" links connected to the

appropriate node. The actual ViewNet display is
in color. Each node has a special color indicating
its status as a potential link. In addition, the links
are color coded from red to grey indicating their
relative position in the list of ranked links. The
laser probability model tends to select the closer
links as opposed to the more distant links. How-
ever, it ranks extremely close links as less probable
due to the fact that the position error becomes
more significant at closer ranges. Observing the
ViewNet display, as the links are reordered and
displayed, this trend is apparent.

The second visualization of the simulation is
a graph depicting the enhanced set of links avail-
able to a router versus the set of all possible. The
set of all possible links is those links within LOS
and within range. The ber is computed for each of
these links and averaged. This plot is provided as
a function of time. The HALQO algorithm
enhancement is shown by averaging the top 8 links
in the ranked list of links. This average is plotted
as a function of time also. The plot indicates that

o
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Figure 5 - Time Snapshot of Adaptive Link Viewnet Display
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the top eight ranked links are an order of magni-
tude better probability of successful transmission
over just any possible link. The plot is shown in
Figure 6.

4. CONCLUSIONS

The previous section presented a successful
simulation of a GPALS-based BP architecture
using the Discrete Event Simulation capabilities of
the COPES Shell. This simulation in COPES is
very flexible and easily modifiable to address the
BP network in its entirety, including any future
architectural or procedural changes. The simula-
tion of the network and results of the HALO algo-.
rithm were also interfaced with the Harris
developed ViewNet graphics tool for network
analysis on the Silicon Graphics Workstation.
Also described was the COPES implementation
of the HALO algorithm. A graphical analysis
showed that the algorithm generates a reduced,
improved, and ordered set of links for further use
by a routing algorithm. The benefit of a lower bit
error rate on the selected link is a reduction in the
power requirement for the communications.

Given the flexibility of a constraint approach
to the HALO algorithm written in COPES,

changes in constraints can easily be made to, for
instance, emphasize links which are more distant.
This is an area for future research.

5. FUTURE RESEARCH

For the ALR program, the size of BP con-
stellation which must be considered by a routing
algorithm has been reduced to one closer to the
GPALS architecture. We use an orbital dynamics
program to remove all nodes which are never seen
by the reference pebble we are studying. Finally,
‘using a set of constraints defined above, the set of
potential links is reduced and ordered by how well
“each meets the constraints. The next step is to
develop an intelligent routing algorithm which
would use this ordered list of potential "next hops”
to choose a link or links for a particular message.
The major advantages to this approach are that the
set of potential links has been reduced significantly
prior to the running of the routing algorithm, and
the probability of successful transmission is higher.
An intelligent routing algorithm might also contain
heuristics to allow it to consider the first n poten-
tial links based on the situation, since the links are
already sorted by how well they satisfy a set of
link constraints.
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Figure 6 - BER of All Links vs Top Eight Ranked Links
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An Architecture for Object-Oriented Intelligent
Control of Power Systems in Space

Sven G. Holmquist, Prakash Jayaram, and Ben H. Jansen

Department of Electrical Engineering
University of Houston, Houston, TX

A control system for autonomous distribution and control of electrical power during space
missions is being developed. This system should free the astronauts from localizing faults
and reconfiguring loads if problems with the power distribution and generation components
occur.

The control system uses an object-oriented simulation model of the power system and first-
principle knowledge to detect, identify, and isolate faults. Each power system component
is represented as a separate object with knowledge of its normal behavior. The reasoning
process takes place at three different levels of abstraction: the Physical Component Model
(PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model
(FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the
EEM level the power system components are reasoned about as their electrical equivalents,
e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge
about the component’s specific characteristics is taken into account. The FSM level models
the system at the subsystem level, a level appropriate for reconfiguration and scheduling.

The control system operates in two modes, a reactive and a proactive mode, simultaneously.
In the reactive mode the control system receives measurement data from the power system
and compares these values with values determined through simulation to detect the existence
of a fault. The nature of the fault is then identified through a model-based reasoning process
using mainly the EEM. Compound component models are constructed at the EEM level and
used in the fault identification process. In the proactive mode the reasoning takes place at
the PCM level. Individual components determine their future health status using a physical
model and measured historical data. In case changes in the health status seem imminent the
component warns the control system about its impending failure. The fault isolation process
uses the FSM level for its reasoning base.

1 Introduction made fast, often without the help of experienced
control room operators, and often relying on in-

complete information.

Failure to provide a reliable, uninterrupted sup-
ply of electrical power under all circumstances
may doom space missions. In case of impend-
ing or actual failures, decisions will have to be
made about rescheduling load demand and/or
reconfiguring the power generation and distri-
bution system. These decisions will have to be
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Knowledge-based (or intelligent) control sys-

tems have the ability to make decisions, and

the capability to learn, and therefore seem ide-
ally suited for the operation of complex systems
such as electric power plants and distribution
systems. However, practical applications of in-
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telligent controllers are rare, and appear to be
based on control strategies that use prewired
solutions to a collection of potential problems,
and/or use a supervisory planning approach to
failure recovery. As a consequence, these sys-
tems have no way to deal with unanticipated,
or multiple simultaneously occurring faults, and
they have little or no capability to adapt to
changing environments or to learn from past ex-
periences.

We are working on overcoming these afore-
mentioned limitations by developing an intelli-
gent control system that uses quantitative and
qualitative system models based on an object-
oriented representation of the components of
the physical system to be controlled.
object-oriented representation decentralizes in-
telligence by equipping each component with
knowledge about how to detect its impending
failure, and how to act in case of failure. This
reduces the time required to detect faults when

compared to an approach relymg on a single

central fault detector. Furthermore, the object-
oriented representation can be implemented in
a parallel computer, leading to even shorter re-
sponse times. The intelligent controller will use
these models to explore the “optimal” control
actions to modlfy the system performance or
operation. Also, by equipping the model com-
ponents with knowledge about their behavior
(e.g., aresistor will “know” how its temperature
will rise in response to the voltage and current
applied to it), and with memory (e.g., a record
of its temperature for the last hour or so), proac-
tive autonomous control can be achleved even
with incomplete sensor data.

Expert systems have been applied to the
power engineering area before (see [10] for a
review), but few such system are beyond the
demonstratlon phase, and all were developed for
large-scale, mterconnected systems. The most
promising approaches involve the use of object-
oriented techniques because an object-oriented

The

approach models the causal and functional re-
lationships by inheritance and message passing
mechanisms, and the part-of or component hi-
erarchy [7]. Furthermore, objects are complete
functional units that lend themselves to paral-
lel implementations more easily than rule-based
approaches, which is important for real-time ap-
plications.

A fairly small number of applications of
object-oriented programming techniques for the
intelligent control of power systems have been
published [1, 2, 6, 9], with the prototypical sys-
tem for event diagnosis and operation planning
described in [3] being most closely related to
our own work. However, it is unclear how much

“this system relies on reasoning from first prin-

ciples (if it uses that concept at all), nor does it
seem to have progressed beyond its first proto-
type state. Notwithstanding this criticism, [3]
clearly shows that object-oriented, model-based
methods are indeed advantageous for problems
in control. The theory of model-based reason-
ing is explained by Kuipers [5]. Model-based
systems are especially useful in the diagnosis of
multiple faults as shown in [4]. Also, it is argued
in [4] that diagnosing faults at multiple levels

of abstraction, starting with the most abstract

~level, and examining the less abstract levels
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only when there is reason to suspect it, makes

the generation of candidate solutions more effi-
cient.

2 Architecture of the pow-
er system simulator and
_controller.

Our work is based on a multi-level model of
the system, with mtelhgence built in at each
level in the sense that each component can Tea-
son about its real-world state, as opposed to
a higher level intelligence that reasons about
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Figure 1: Overview of the architecture of the model-based, object-oriented control system.

all the “dumb” lower level objects. Also, the
object-oriented design we follow is intended
to support concurrency with only a minimal
amount of knowledge being exchanged.

2.1 General
tion.

System Descrip-

A diagram of the control system is presented
in Figure 1. At its core is a model of the sys-
tem to be controlled. This model represents the
physical system under normal operating condi-
tions, and is referred to as the H, simulator.
At least three versions of Hj exist, represent-
ing the physical system at various level of ab-
straction. First, there is the Physical Compo-
nents Model (PCM), containing physically re-
alistic models of the components of the sys-
tem to be controlled. At the next level of ab-
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straction, one finds the Electrical Equivalent
Model (EEM). The latter is a representation of
the physical system in terms of power sources,
impedances, and switches. The Functional Sub-
systems Model (FSM) is the most abstract of
all, and represents the system in the form of
a reduced network in which sub-nets are rep-
resented by single functional blocks. An ex-
ample of the PCM, EEM, and FSM of a sim-
ple physical system, consisting of a generator,
switches, resistive loads (a light bulb and an
electric heater) is shown in Figure 2. The elec-
tric heater consists of a fan, i.e., a motor (M1)
and a resistive heating element (L2); and the
light bulb is denoted by L3.

Each of the three models is an object-oriented
representation of the actual system. That is,
components are represented as data structures
referred to as objects. The latter consist of at-
tributes relating to properties of the component
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Figure 2: An example of a Physical Component Model (mght) zts Electmcal Equwalent Model
, (mzddle ), and its Punctional Subsystems Model (left).

being represented, and attribute—values specify-
ing the values of these properties and/or proce-
dures that can be used to compute these values.

The topological relationships between com-
ponents in the PCM, EEM, and FSM are spec-
ified by attributes describing the connections
between the present component and others in
the network. Expected voltages at nodes and
currents through branches in the EEM are com-
puted using the VIsolver. The VlIsolver is an
object that solves for the currents and volt-
ages of the power system using the modified
" nodal formulation [8]. The solution is based on
Kirchhoff’s current and voltage laws in a ma-
trix form with special considerations taken to
reduce the size of the matrices but at the same
time keeping it general. This method can be
~ used on networks containing voltage and cur-
" rent sources, impedances, conductances, ideal
two-ports, and switches. Historical data, in-
tended for use in the proactive mode, for each
component is stored in history attributes. Sen-
sors placed at strategic positions in the phys-
ical system (in our case, the physical system
is a software simulation as well) provide mea-
surements of voltages and currents in the power

system The PCM and the EEM work in tan-

dem, using the knowledge embedded in them, to
detect potential faults. Once faults have been
detected (see Section 2.2 below for an explana-
tion of the fault detection process), additional
versions of the PCM, EEM and FSM are au-
tomatically generated, representing models of
the physical system modified in such a way as
to account for the hypothesized cause of the
fault. For example, H; and H2 may be gener-
ated in case two explanations for the fault are
possible. Competing hypotheses are eliminated
on the basis of comparing future sensor data
with predicted values, and/or heuristic reason-
ing. Once the fault has been determined (iden-
tified) remedial action is taken to return the
system to a non-faulty state through reconfigu-
ration of loads and : sources

22 Fault Detectigg,, -
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Faults may be present if dlscrepanaes between
sensor values and expegtegl values are found in
the EEM, orif a _component in the PCM antici-
pates 1mpend1ng failure (on the ‘basis of knowl-

edge about the behavior of its physical equiva-



lent, and the historical data available). In other
words, the system works in both a reactive and
a proactive mode simultaneously.

As an example of reactive operation, consider
the system shown in Figure 2. Assume that
voltages and current measurements are avail-
able at the output of the generator (V1), the
input to the heater (R1 and R2), and the input
of the light bulb (R3). Assume that the mea-
sured voltage and current at the heater sud-
denly drops. The voltage at the light bulb
will also change slightly, and the current at the
source will decrease. Therefore there is a dis-
crepancy between measured sensor values and
simulated sensor values and a fault is detected.
It is not obvious from the measurements which
component is faulty. However, by reasoning us-
ing knowledge of the fault models for each com-
ponent and their health status it is possible to
narrow down the number of possibilities and,
eventually, the fault can be identified and iso-
lated through simulation (see Section 2.3 for de-
tails).

An example of proactive fault detection is the
following: Assume that M1 in the PCM finds
that its real-world counterpart is about to over-
heat due to a continuous overload beyond its
rating. The M1 object then immediately sig-
nals its impending fault state to its equivalent
counterpart (R1) in the EEM and tells R1 that
the current needs to be reduced. The control
system formulates strategies to reduce the cur-
rent through R1, using the knowledge encapsu-
lated in it (in this case the only possibility is
switching off the motor). It is clear that hy-
pothesis selection needs to be based taking into
account the importance of the various subsys-
tems in accomplishing the mission objectives.
The components in the FSM have knowledge
'about these aspects, and this knowledge is used
to determine which of the reconfigured systems
best meets future objectives, and the Hj, that
accomplishes this, becomes the new Hjy after
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the appropriate commands have been issued to
the power system.

2.3 Fault Identification

Once the existence of a fault has been detected
the location of the fault must be determined. A
small change in a single component value can
cause many sensors to indicate the existence
of a fault. To determine which component has
caused the fault (in the reactive mode), branch
currents and node voltages are computed us-
ing the measured data, and each component’s
impedance value is computed based on the cur-
rent running through it and the voltage across
it. The EEM component compares its calcu-
lated impedance with its “known” impedance
and if there is a difference, then the compo-
nent is suspected of having caused the fault.
All components have a health status attribute
which is determined by the PCM and veri-
fied by the EEM. The PCM determines the
health status using heuristics, historical data,
and physical knowledge of the component. Hy-
potheses regarding possible faults are gener-
ated, based on the component’s health status
and impedance discrepancy using the compo-
nent’s fault-model, supplied by the PCM.

The aforementioned approach will work if
the environment is sensor-rich, i.e., there are
enough sensors in the network to calculate the
impedance of all components. However, if the
environment is sensor-sparse, i.e., there are rel-
atively few sensors in the network, then a strat-
egy will be followed that converts the sensor-
sparse environment into a virtual sensor-rich
énvironment. This approach is based on the
concept of compound component models. The
latter are formed by combining components
connected in series, parallel, or in a bridge con-
figuration to a single compound component.
Compound components can be part of other
compound components. The location of the



available volt-meters and current-meters guides
the formation of compound models so that in
the (reduced) environment the impedance of
each compound component can be determined.
In other words, the reduced network becomes
virtually sensor-rich with respect to the com-
pound components. The impedance and health
status of the compound components is calcu-
lated based on the impedance, the health sta-
tus, and the interconnection of the individual
components that make up the compound com-
ponent. The fault identification process can
then function in a similar fashion in both a
sensor-rich and a sensor-sparse environment.
Of course, fault localization can then only pin-
point a compound component as the source of
the trouble. However, using the fault models,
heuristics, and historical data about the compo-
nents making up the compound component can
be used in a reasoning process to more precisely
identify the fault location.

To illustrate the reasoning process, consider
the case where a fault has been localized to a
compound component consisting of two parallel
resistive loads. Suppose that one of the loads is
a motor, and the other a heater. Faults occur-
ring in these components will reflect themselves
as changes in the component’s impedance (e.g.,
a short will cause a virtually zero impedance).
Further, assume that only the voltage across the
loads and the total current, but not the currents
through each load, are known. In such a case,
it will be impossible to determine which load
is faulty based on the available measurements
alone. However, using fault-models supplied by
the PCM, coupled with the assumption that a
single fault is considerably more likely to oc-
cur than a multiple fault, one or more hypothe-
ses can be generated. For example, the PCM
“knows” that a heater’s most common failure
mode is breakage of the heater element, causing
the impedance to go to infinity. Therefore the
H, hypothesis would replace the EEM of the
heater by an infinite impedance, while leaving
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the EEM of the motor unchanged. In a simi-
lar manner H; would replace the motor EEM by
an impedance reflecting its most prevalent fault
state, i.e, a short in the motor coil. The voltages
and currents predicted by each of the compet-
ing components are compared to the measured
data, which will lead eventually to the elimi-
nation of all but one hypothesis. This process
can be refined by utilizing the concept of the
component’s “health status”. The latter can
be used to determine the order in which com-
ponents should be hypothesized as faulty. For
example, the fact that a component has been in
service for close to its expected life span, gives
it a poor health status and thus it will be hy-
pothesized as faulty prior to components with a
good health status. The system will keep track
of which components fail, and under what cir-
cumstances. This “failure log” is fundamental
to the learning capabilities of the system, which
will come to “recognize” previously encountered
failure modes.

3 Design and implementa-
tion of the power system
simulator and controller.

We are currently in the process of implement-
ing the previously outlined architecture. The
NeXT computer has been chosen as the im-
plementation platform. The NeXT supports
Objective-C and has extensive graphical inter-
face capabilities.

The power system simulator has been de-
signed and implemented. A graphics-based tool
has been developed to interactively configure
the power system to be simulated. A panel
with icons, representing components typically
encountered in a power system, is presented,
and the user can “click-and-drag” these icons in
the desired position in the power system win-
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dow. The specifications for each component
are entered by changing the attribute values, in
an inspector window, for the component. The
resulting power system can simulate voltage
sources, switches, and resistive loads. We are
only considering direct currents at the present,
but a generalization to alternating currents is
kept in mind.

A schematic diagram of the power system 1is
shown on the screen in a power system simula-
tor window with the component values and cur-
rents and voltages displayed next to each com-
ponent. The power system’s voltages and cur-
rents are calculated by the simulator’s VIsolver.
The VIsolver is an object that solves for branch
currents and node voltages for any electric net-
work including power systems using the nodal
admittance matrix. The solution is based on
Kirchhoff’s current and voltage laws in a ma-
trix form with special considerations taken to
reduce the size of the matrices but at the same
time keeping it general.

Changes in switch settings, load resistance,
and source voltages can be made through an
event queue or by clicking on the component
in the schematic drawing of the power system.
The event queue is editable and is used to insert
faults into the power system. The power sys-
tem’s voltages and currents are automatically
recalculated when the power system simulator
receives an event or a switch position is changed
by clicking on the switch with the mouse. The
events are sent to the power system one after
the other in order of occurrence in time.

A control system that reads data from the
power system simulator has been implemented.
It is possible to set which voltages and currents
the control system can receive from the power
system by inserting volt-meters and current-
meters at the desired positions in the network.
The data is displayed in a separate control sys-
tem window containing the same diagram as
shown in the power system simulator window.
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The control system is capable of issuing com-
mands regarding switch settings to the power
system. The control system is capable of form-
ing compound models of components in series,
parallel, and bridge configurations.

4 Future developments.

At present, a component library is being built
for commonly used electric power components,
including DC-motors, generators, circuit break-
ers. These components, with their embedded
knowledge, form an important part of the fault
detection system.

The current speeds of execution of the system
suggest that parallel implementation is necessi-
tated in order to achieve real-time implemen-
tation. Though we lack the hardware for such
an implementation, a successful attempt has al-
ready been made at executing the various tasks
in the program concurrently on the same pro-
cessor using separate threads. We expect to im-
plement the final system with a fair amount of
distributed processing over a network of NeXT
computers, so that each task will have its own
processor, with the goal of achieving significant
speed-ups.

Acknowledgements

This worked has been sponsored by grants from

'NASA/Johnson Space Center, and the Energy

Laboratory of the University of Houston.

References

[1] Gholdston, E. W., Janik, D. F., and New-
ton, K. A. (1989). Hybrid approach to
space power control utilizing expert sys-



8]

[4]

[5]

[6]

tems and numerical techniques. Proceed-
ings of the Intersociety Energy Conversion
Engineering Conference, Piscataway, NJ:
IEEE-Press, 177-182.

Kao, C.Y., and Morris, W.S. (1989).
Spacelab life sciences-1 electrical diagnos-
tics expert system. Telematics and Infor-
matics, 6, 201-220.

Keronen, J.J. (1989). An expert system
prototype for event diagnosis and real-time
operation planning in power system con-
trol. IEEE Transactions on Power Sys-
tems, 4, 544-550.

de Kleer, J., and Williams, B.C. (1987).
Diagnosing multiple faults. Artificial Intel-
ligence, 82, 97-130.

Kuipers, B. (1986). Qualitative simulation.
Artificial Intelligence, 29, 289-338.

Lee, S.J., Yoon, S.H., Yoon, M.C., and
Jang, J.K. (1990). Expert system for pro-
tective relay setting of transmission sys-
tems. IEEE Transactions on Power Deliv-
ery, 5, 1202-1208.

82

[7]

[8]

[9]

[10]

Levitt, R.E., and Dym, C.L. (1991).
Knowledge Based Systems in Engineering.
New York: McGraw-Hill.

Vlach, J., and Singhol, K. (1983). Com-
puter Methods for Circuit Analysis and De-
sign. New York: Van Nostrand Reinhold
Company.

Walls, B. (1989). Starr: An expert system
for failure diagnosis in a space based power
system. Proceedings of the Intersociety En-

ergy Conversion Engineering Conference,
Piscataway, NJ: IEEE-Press, 303-306.

Zhang, Z.Z. , Hope, G.S., and Malik, O.P.
(1989). Expert systems in electrical power
systems - A bibliographic survey. IEEFE
Transactions on Power Systems, 4, 1355-
1361.



N93-25969

The Use of Multiple Models in Case-Based Diagnosis-

R
Stamos T. Karamouzis

Stefan Feyock**

Department of Computer Science
College of William & Mary
Williamsburg, VA 23185

Abstract

The work described in this paper has as its goal
the integration of a number of reasoning
techniques into a unified intelligent information
system that will aid flight crews with malfunc-
tion diagnosis and prognostication. One of these
approaches involves using the extensive archive
of information contained in aircraft accident
reports along with various models of the air-
craft as the basis for case-based reasoning
about malfunctions.

Case-based reasoning draws conclusions on the
basis of similarities between the present situ-
ation and prior experience. We maintain that
the ability of a CBR program to reason about
physical systems is significantly enchanced by
the addition to the CBR program of various
models. This paper describes the diagnostic
concepts implemented in a prototypical case-
based reasoner that operates in the domain of
in-flight fault diagnosis, the various models
used in conjuction with the reasoner's CBR
component, and results from a preliminary
evaluation.

Introduction

Reasoning about physical systems is a difficult
process, and any attempt to automate this proc-
ess must overcome a number of challenges.
Among these are the tasks of generating expla-
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nations of normal behavior, fault diagnoses, ex-
planations of the various manifestations of faults,
prediction of future behavior, etc. The reasoning
process becomes even more difficult when
physical systems must remain in operation. Dur-
ing operation, a physical system changes dy-
namically by modifying its set of components,
the components' states and pattern of intercon-
nections, and the system's behavior.

To address these concemns a prototypical case-
based reasoner (CBR), called Epaion, has been
developed by the Intelligent Cockpit Aids Team
at NASA Langley Research Center, in connec-
tion with ongoing work on Al-based systems for
in-flight fault management [Schutte et al.]. The
reasoner operates in the domain of in-flight fault
diagnosis and prognosis of aviation subsystems,
particularly jet engines. Automation of in-flight
fault diagnosis and prognosis can be used as an
aid to the flight crew for early detection of a
problem or failure. This provides the crew with
more time to respond more effectively and re-
duce potential damage due to the failure.

Several aspects of the aircraft domain make
automation of in-flight diagnosis challenging. In
contrast with non-operative diagnosis (i.e., diag-
nosis of systems that can be shut down), symp-
toms in aircraft subsystems may change with
time because of failure propagation. Information
about the operational status of many aircraft
components may be unavailable or incomplete
due to limited instrumentation, and safety and



comfort considerations place further constraints
on in-flight testing.

The approach we are taking employs a novel
methodology for dealing with physical systems in
operation, and involves the use of case-
based techniques in conjunction with models that
describe the physical system. Case-Based Rea-
soning systems solve new problems by finding
solved problems similar to the current problem
and adapting their solutions to the current prob-
lem, taking into consideration any differences
between the current and previously solved situ-
ations. Because CBR systems associate features
of a problem with a previously derived solution
to that problem, they are classified as associa-
tional reasoning systems.

We maintain that the ability of a CBR program
to reason about physical systems can be signiﬂ-
cantly enchanced by the addition of various
models to the CBR program. This paper de-
scribes the diagnostic concepts implemented in
Epaion!, the various models used in conjuction
with the CBR component, and results from
Epaion's preliminary evaluation. Although the
examples presented pertain to aircraft malfunc-
tions, it is clear that these techniques are
applicable to spacecraft as well.

Knowledge Sources

Epaion draws its power from several knowledge
sources, including a library of aircraft acci-
dent/incidents; a functional dependency model
with deep domain information about the func-
tional dependencies between the components of
the aircraft; and a model representing causal
information concerning transitions between vari-
ous states of the aircraft.

! Ancient Greek for "expert”
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Case Library

Epaion maintains a library of actual aircraft acci-
dent/incident scenarios called cases. Each case
consists of a set of features that identify the
particular scenario, a list of the relevant context
variables and their particular status, a set of ob-
servable symptoms, the fault, and a causal expla-
nation that connects the observable symptoms to
a justifying cause. The set of identifying features
includes information such as aircraft type, airline,
flight number, date of the accident, and similar
data. The list of context variables includes in-
formatlon such as the phase of flight, the
weather, etc. The set of symptoms includes
information about abnormal  observations
from mechanical sensors such as the value of
the exhaust gas temperature, the value of engine
pressure ratio, or from "human sensors,"” such as
the sound of an explosion, or the smell of smoke
in the passenger cabin. Cases containing all of
this information are called library cases, whereas
cases where the fault and the causal explanation
are not available are called input cases.

In contrast to most other CBR research efforts,
each case in our methodology consists not only
of a set of previously observed symptoms, but
also represents sequences of events over certain
time intervals. The time intervals may have un-
known and unequal lengths; it is the event order-
ing that is of importance. Such temporal in-
formation is necessary when reasoning about
operating physical systems, since the set of
symptoms observed at a particular time may rep-
resent improvement or deterioration from a pre-
vious reading, or may reveal valuable fault
propagation information. In a jet engine, for
cxample, the fact that the fan rotauonal speed
was observed to be abnormal prior to an abnor-
mal observation of the compressor rotational
speed is indicative that the faulty component is
the fan and that the fault propagated to the
compressor, rather than the reverse.

A ey 1 e o



Causality Model

Epaion's causality model contains information
such as "fan-blade separation causes the rota-
tional speed of the fan to fluctuate" and “the
rotational speed of the fan causes the engine
pressure ratio to fluctuate." Along with the
causal information between two states, €.g.
mnefficient air flow" and "slowing down of the
engine", the model maintains a frequency count
of the number of times that the system witnessed
that inefficient air flow caused the engine to slow
down.

Functional Dependency Model

The functional dependency model is a digraph
model of an aircraft system, with nodes repre-
senting primitive components, and arrows con-
necting nodes representing functional depend-
encies. Component B is said to be functionally
dependent on component A if the proper func-
tioning of B depends on the proper functioning
of A. For example, the control surfaces of an
aircraft are functionally dependent on the hy-
draulic system, since they will cease operating if
the latter fails. The functional dependency
model contains two kind of arrows, representing
immediate and non-immediate links between
components. Two components C; and C, are
connected via an immediate link (I-link) when
C,'s failure propagates immediately to Cyp, ie.,
abnormal function of C; at time tj results in ab-
normal function of C, at time tp and t; = tp. If t
>ty then C; is said to be connected to Cy via an
non-immediate link (N-link). For example, if the
fan belt in an automotive engine breaks, the fault
propagates immediately to the electrical system,
as indicated by the generator light, but it may
take some time before the propagation to the
cooling system becomes evident from the tem-
perature SEnsor.

Physical Dependency Model

The physical dependency model is a digraph of
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an aircraft system, similar to the functional de-
pendencies diagraph, in which the links in the
graph represent potential paths of fault propaga-
tion due to physical proximity. This sort of
propagation occurs when uncontrolled dis-
charges of energy attendant on component mal-
functions propagate to neighboring systems. The
severing of nearby hydraulic lines by blade frag-
ments from a disintegrating turbine provides a
typical example.

The Abstraction Hierarchy

The Case-Based Reasoning component of
Epaion consists of a self-organizing memory
structured as a frame-based abstraction hierar-
chy, as defined by [Schank 1982]. This memory
forms an upper bounded semi-lattice that
contains domain specific information at different
levels of abstraction. The information contained
in the lattice includes:

a. The names of all components in an aircraft
engine.

b. The components that are sensors. The exhaust
gas temperature, the rotational speed of the fan,
and the fuel flow indicator are some of the me-
chanical sensors in an aircraft's engine. Vision,
sight, and smell are the "human sensors" used in
the diagnostic process.

¢. The possible values for each sensor. For a
mechanical sensor the allowable values —are:
lower than expected; normal; higher than ex-
pected. If a sensor initially indicates values that
are normal, then at the following time interval
indicates values that are lower than expected,
and at the third time interval still indicates values
which are lower than expected, then the status of
the sensor during these three time intervals is
normal, lower, lower which is a kind (.e,
subcategory) of overall lower than expected
status which in turn is a kind of abnormal status.



d. The various faults that may be observed in an
engine subsystem. For example, it is represented
that seagull ingestion is a kind of bird ingestion
fault which is a kind of foreign object ingestion
fault and so on.

e. Information on how faults manifest them-
selves. For example, fan vibration and ab-
normality in the rotational speed of the fan are
manifestations of a problem in the fan.

f. The accident/incidents that the system already
knows. For example the system knows that the

incident of a China Airlines Boeing 747 that

suffered a rmshap over the Pacific Ocean on
February 19, 1985 [NTSB-AAR-86- 03] is an
instance of an accident/incident since it is a kind
of rotor related scenario which is a kind of
engine related scenario which is a kind of acci-
dentlincident scenario.

Reasoning Cycle

Epaion's reasoning cycle consists of the follow-
ing three phases: input a new problem; retrieve
the most similar case; adapt the retrieved case to
fit the current scenario.

Epaion's input constitutes a set of symptoms ex-

perienced by an airplane's crew during a flight.
When the system experiences a new set of
symptoms, i.e., when faced with an input (new)
case, it searches its case library for the
most similar case. This is done by placing the
input case in self-organizing MOP? memory un-
der the most appropriate parents, determined as
described in [Riesbeck & Schank 1989]. The
siblings may therefore be assumed to be closely
related. The nearest sibling is retrieved as the
case that is most similar to the input case.

When the system finds and retrieves a similar
case, Epaion assumes that the current fault is the

2 Memory Organization Packet
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same as the fault in the retrieved case and adapts
the causal explanation of the retrieved case to fit
the current case. The fault and the causal expla-
nation are both stored in the case library for
future usage. The system is provided with a set
of adaptation rules which, in addition to adapting
the retrieved causal explanation to fit the current
case, find possible gaps in the causal explanation
and fill in the missing causalities by using the
models. This causal explanation connects the
symptoms to ajustifying cause, and thus the
system's multiple-model-based causal reasoning

ability produces a causal analysis of the new

case, rather than simply a reference to a prcwousi

solution. The new causal analysis is not
only stored in the case library as part of the input
case, but is used toaugment and modify the
knowledge of the causal model. The following
section provides details of this process.

Adaptation and the Models

Epaion's adaptation algorithm is sﬁmfnarized in
the following two steps:

The first step involves the transfer of the fault
from the library case in the input case and con-
sists of two possibilides.

Case 1: If the match between the input case and
the library case exceeds a threshold value then
the fault is transferred intact. For example, if in
the library case the fault was a malfunctioning
fuel controller, then it is assumcd to be the same
in the mput case

Case 2: If the match is below the threshold value
then an abstraction of the library case fault is
transferred to the input case. For example, if in
the library case the fault was bird ingestion, then
it is assumed that in the input case the fault is
foreign object ingestion.

The second step involves the adaptation of the
causal explanation of the library case so it can
explain each, or as many as possible, of the



symptoms of the input scenario by connecting
them to a justifying cause. This consists of the
following possibilities:

Case 1: If the library case and the input case
have identical symptoms then the causal expla-
nation of the library case is transferred intact to
the input case.

Case 2: If the input case contains symptoms that
do not appear in the library case then the causal
explanation of the library case is transferred in
the input case and the following additional proc-
essing takes place. Let ¢2 be an unexplained
input case symptom.

Subcase 1: If the causal model contains the
relation ¢1 causes ¢2, and ¢1 is a symptom or
manifestation in the input case, then the link ¢1
causes ¢2 is added in the causal explanation of the
input case.

Subcase 2: The causal portion of the model
does not contain the relation ¢1 causes ¢2, but the
functional dependency model knows that com-
ponent C; is functionally dependent on compo-
nent Cy, and ¢1 is a manifestation of abnormal
behavior of component Cy, and similarly ¢2 is a
manifestation of C,. This knowledge is depicted
by the graph

¢1 $2

>

C1 C2

where ¢ denotes a phenomenon that is a symp-
tom or manifestation p of abnormal behavior of a
component. Additionally, if ¢1 is a symptom in
the input case and time(¢l) < time(¢2), i.e.,
symptom ¢1 appeared before or concurrent with
¢2 then the link ¢1 causes ¢2 is added in the causal
explanation of the input case.
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At present, Epaion is implemented to diagnose
faults in the engine subsystem of a generic twin
engine transport. The programs currently run on
various platforms using Common Lisp. Figure 1
displays the use of the various models during the
adaptation process.

Unexplained Symptoms

Remaining Symptoms

Ny

Functional
Model

Remaining Symptoms

Simulation
Model

Figure 1: Use of models during adaptation
Simulation and the Physical Model

We have indicated that Epaoin uses a physical
dependency digraph as one of its models. This is
a makeshift measure, however, due to the fact
that physical fault propagation, being the result
of catastrophic component failures, is highly
unpredictable. One expedient for dealing with
this unpredicatability is to refer to previous
cases, as Epaion does; another is to utilize spa-
tial simulation models (SSMs) to determine the
effect of uncontrolled energy releases. [Feyock
& Li, 1990, 1992] describe the use of SSMs to



predict both fluidic and energy leaks3. These
models, which are easily interfaced with host
systems, require only the identity of the faulty
component, which can be supplied by Epaion.
The SSM then looks in the component database
to determine the location and type of the com-
ponent. If the component is of a type that can
cause a fluid or energy leak, the system uses this
information to set the initial conditions for the
simulation. The simulation is then run, and the
physical propagation paths predicted by the SSM
are extracted from the run data.

In addition to addressing the chaotic nature of
physical propagation, our use of simulation
models in conjunction with more traditional rea-
soning systems is prompted by a belief that
deriving answers to real-world questions by
setting up the initial conditions of simulation
models, running the simulations, and extracting
information from the results of the run, consti-
tutes a powerful but underutilized mode of op-
eration for Al systems.

Results

We conducted an experimental evaluation of
Epaion on actual aircraft accident/incident cases
involving engine faults. Information provided in
the individual accident/incident reports from the
National Transportation Board (NTSB), the
British Air Accidents Investigation Branch
(AAIB), and data collected from test accidents
staged at Boeing Inc. [Shontz et. al. 1992] was
used to derive the appropriate information con-
stituting each case, a process called accident
reconstruction. We rteconstructed a total of
eighteen cases, of which sixteen were used as
library cases, and six as input cases.

The evaluation process required that each input
case be presented to Epaion separately, and that

3 We denote as "energy leaks” the catastrophic
disintegration of components due to the uncontrolled
release of kinetic or potential energy.

the system produce a diagnosis along with a
causal explanation. The diagnosis produced by
Epaion was then compared with the correct
diagnosis for the particular scenario. In addition,
the reasoner was evaluated based on the number
of symptoms for which the reasoner was able to
find a justification. A "correct diagnosis” is the
diagnosis determined by NTSB, AAIB, or by
[Shontz et. al. 1992]. Epaion is said to have
produced a complete explanation if the system
was able to explain each observed symptom by
connecting the symptom to a justifying cause.
The results achieved are very promising for the
future success of the system. Based on the re-
sults we make the following observations.

o Classification

Five of the six cases in this evaluation were
correctly classified. A case involving water in-
gestion [NTSB-AAR-78-3] was classified under
the category of miscellaneous scenarios due to
the lack of previously encountered water inges-
tion scenarios. An, expanded case library will
enhance the systems classification capability and
therefore offer better matches for each additional
input case.

» Diagnosis

Epaion was able to correctly diagnose five of the
six scenarios. A case representing the American
Airlines Flight 566 scenario [NTSB-F-A067]
was properly classified as rotor scenario but
misdiagnosed as fan problem rather than turbine
problem. This is a result of the fact that prob-
lems in the fan and problems in the turbine
manifest themselves similarly, and therefore both
kinds of faults are classified under the category
of rotor scenarios. When the American Airlines
scenario was used as input case the system re-
trieved as the most similar case a Dan Air
incident [AAI-AAR-4/90], which is a fan blade
scenario. With almost negligible difference in the
degree of match between the input case and the

-2



relevant library cases, the second best match was
the accident of the United Airlines Flight 611
that took place on July 19, 1970 [NTSB-AAR-
72-9]. This is a turbine fault scenario and would
have achieved a higher degree of similarity with
the input case if the time order of the symptoms
in both cases had been represented more pre-
cisely. All symptoms used in reconstructing the
case of the United Airlines Flight 611 were
based on expert opinion, but none were
explicitly stated in the NTSB report. With the
exception of the behavior of the EGT, the same
holds for the symptoms used to reconstruct the
American Airlines Flight 566 scenario. This
suggests that presenting the system with cases
that are reconstructed based on an accurate set
of symptoms is vital for correct matching and
therefore correct diagnoses.

« Symptom explanation

In five of the cases presented as input Epaion
was able to explain all of the symptoms experi-
enced. When Epaion was presented with the
symptoms of an icing scenario staged at Boeing
[Shontz et. al. 1992] it failed to explain the pres-
ence of broad-band vibration. The failure is at-
tributable to insufficient information in the ab-
straction hierarchy. If the fact that broad-band
vibration is a manifestation of fan abnormality
had been included in the abstraction hierarchy,
the system's functional dependencies model
would have explained the broad-band vibration
symptom as a result of fan blade damage. The
same result would have been achieved if the
system had previously experienced other cases
with broad-band vibration, thus enabling the
causal model to explain the vibration. It is
evident that the more knowledge the system
contains in its abstraction hierarchy, the better its
explanation capability will be. Current efforts are
accordingly focused on expanding  this
knowledge to a substantial size.
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Conclusion

Automation of inflight diagnosis and prognosis
as an aid to the flight crew has great potential for
improving the general safety of civil transport
operations. The Epaion Case-Based Reasoning
system we have developed for the purpose of
performing fault diagnosis and prognosis of
aircraft in operation uses a hybrid
reasoning process based on a library of previous
cases and several types of models of the aircraft
as the basis for the reasoning process.
This arrangement provides the methodology
with the flexibility and power of first-principle
reasoners, coupled with the speed of associa-
tional systems.

A major concern of this project has been to
create a system capable of achieving a practically
useful level of performance on a case base of
significant size, thereby avoiding the "toy prob-
lem" trap besetting many Al systems. The ex-
tensive use of a classification hierarchy allows
the system to achieve O(log n) search times,
while the information abstraction attendant with
accident reconstruction produces space-efficient
representations. The system is currently hosted
on a desktop personal computer, and is esti-
mated to be capable of storing the full set of
propulsion related aircraft accident for the last
20 years. These considerations, together with the
encouraging level of success achieved by
Epaion, support the expectation that this system
will prove to be an effective contributor to air-
craft safety.
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ABSTRACT

This paper describes a method for the design
of autonomous spacecraft, based upon
behavioural approaches to intelligent robotics.
First, a number of previous spacecraft
automation projects are reviewed. A
methodology for the design of autonomous
spacecraft is then presented, drawing upon
both the European Space Agency
technological centre (ESTEC) automation and
robotics methodology and the subsumption
architecture for autonomous robots. A layered
competency model for autonomous orbital
spacecraft is proposed. A simple example of
low level competencies and their interaction is
presented in order to illustrate the
methodology. Finally, the general principles
adopted for the control hardware design of the
AUSTRALIS-1 spacecraft are described. This
system will provide an orbital experimental
platform for spacecraft autonomy studies,
supporting the exploration of different logical
control models, different computational
metaphors within the behavioural control
framework, and different mappings from the
logical control model to its physical
implementation.

Keywords: Spacecraft Control, Space
Robotics, Artificial Intelligence, Subsumption.

Introduction

Al applications in space systems are becoming
more readily accepted, and constitute a key
enabling technology for ambitious projects
such as the Space Station Freedom and Space
Exploration Initiative. Current or proposed
constellations of unmanned spacecraft,
particularly in low earth orbit, and multiple
deep space missions with long
telecommunication propagation delays, can
also gain substantial benefits from the use of
more autonomous spacecraft operation.
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Teleoperation of industrial space facilities and
orbital experimental platforms using highly
autonomous onboard systems may provide
crucial competitive advantages in the
commercial and industrial exploitation of
space.

This paper presents an architecture for
autonomous spacecraft control that supports
the integration of behaviour-based approaches
to emergent intelligence with numerical and
computational simulation models, and
symbolic reasoning systems such as expert
and knowledge based systems. Firstly, a
methodology is proposed for developing
autonomous space systems. Using this
methodology, system operational functions are
hierarchically decomposed, but functional
levels are not mapped directly onto
computational models. The operational
decomposition is used to refine specifications
of layered competencies, based upon a generic
layered competency model. Each competency
level defines a virtual machine interface from
the point of view of superordinate levels.
Hence, the hierarchical decomposition of
system functionality during operational
analysis does not imply a strict corresponding
hierarchical synthesis for design and
implementation, but provides a framework for
specifying system behaviours and resources,
and for understanding their interactions.

The realisation or implementation of the
functionality of successive virtual machines
can be carried out using the most appropriate
computational paradigm, or a rich
combination of paradigms. From this point of
view, a knowledge base or expert system can
be regarded either as a convenient abstraction
adopted during the design process to define
the input/output behaviour of behavioural
modules, or as a resource for use by
behavioural modules much as human



operators would use expert systems for
particular tasks.

A simplified example application of this
approach is presented. The resulting satellite
control architecture is significantly different
from previous satellite designs, having
improved robustness, decreased operating
overheads, and more autonomous fault
tolerance. Current plans are to validate and
refine this approach in a rich simulation
environment, and eventually to build and
operate a satellite for ongoing in-orbit trials
and experiments.

Precedents

Onboard autonomy is a matter of degree.
Pidgeon et al (1992) describe how a number of
current spacecraft have mechanisms for fault
detection, reporting, and subsequent switching
to component, subsystem, or system fail-safe
modes. Human operators must then diagnose
faults and initiate appropriate contingency
recovery procedures. Increasing abstraction
levels in spacecraft command languages have
also been adopted. For example, in normal
operations, the Hipparcos spacecraft is
controlled by processed commands which are
sent to the onboard computer for distribution
to other systems, and for possible time
tagging. Direct commands are also available,
which bypass the onboard computer as a
backup in the event of computer failure, and
for more direct access to the controlled
systems. Priority real time commands can also
be issued, which allow direct switching of
systems. The ERS-1 spacecraft, which is in a
low polar orbit with limited ground access, has
a similar command macro system, with four
command types providing different functions
and levels of authority. The lowest levels of
commands bypass the onboard computer and
data handling system, again ensuring control if
those systems fail. The EURECA system,
comprising fifteen separate payloads, uses an
onboard Master Schedule which contains a list
of time tagged command macros for execution
by the onboard data handling system. Those
commands include rudimentary failure
routines, backed up by safe modes to deal with
command loop failure. Again, direct
telecommands can also be used, to bypass the
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data handling system and onboard computer in
the event of their failure.

The degree of onboard autonomy is
continuously increasing, and can be expected
to incorporate a wide variety of techniques
from AI and intelligent robotics research. A
number of prototype systems have been built
to investigate onboard expert system
applications, including DIPOLE, SAGES,
APS, SACV, and SICON (see below).
Operational systems may include the Cassini
Titan Probe, and many Space Station Freedom
applications. Most of these systems involve
onboard architectures comprising a number of
distinct modular functions. Autonomous
systems of increasing size and complexity
tend to have distributed functionality, with the
various functions running on separate physical
processors. Another recurrent theme is the
devolution of autonomous functions to the
lowest possible abstraction levels.

Tello (1986) describes DIPOLE, a system for
satellite control which is intended to integrate
“"shallow" heuristic or rule based reasoning
with "deep" model-based reasoning. The
shallow system wuses fault-tolerant
mathematical and algorithmic subroutines, and
has the form of real-time expert systems with
data-driven switches for controlling their
performance. The aim is for the deep
reasoning system to take over when the
shallow system gets into difficulty, and to
allow the shallow system to resume when the
deep reasoning system has resolved the
problem. The DIPOLE architecture addresses
two particular problems for real time
deliberative controllers. Circumspection is the
problem of enumerating all implicit conditions
and assumptions associated with given
knowledge, and the ability to handle situations
when these are no longer valid. /nference
thrashing is the situation when inferencing
cannot produce solutions quickly enough to
keep up with changing circumstances.
DIPOLE seeks to address these problems by
using shallow rule based expert systems as
reflex processors in real time, with longer
deliberative processes performed by the deep
reasoning system.

Ciarlo et al (1987) describe a spacecraft expert
system prototype study conducted for the



European Space Agency. Some of the
conclusions of the initial study include:

- highly simplified interfaces typical of
spacecraft modular units reduce integration
and control problems. However, this
severely limits the information available for
monitoring each unit, and the choice of
actions available to correct failure, to the
point of making the advantages of expert
systems questionable when compared to
standard algorithmic or table-driven
software.

- it is difficult, and not necessarily
advantageous, t0 use an expert system ina
satellite designed without this in mind.

Ciarlo and Schilling (1988) report upon work
following on from this initial study to consider
an expert system embedded within the Cassini
Titan probe, for autonomously managing the
descent of the probe into Titan's atmosphere.
The authors note that to keep the complexity
and susceptibility of the system to faults as
low as possible, the autonomous system
should be implemented at the lowest possible
level, with capabilities such as component and
sensor self testing and redundancy switching.
Scientific management, which involves
adaptation to the situation according to
complex rules, is regarded as an appropriate
function for implementation as a knowledge
base. Engineering management, involving
FDIR and subsystem control, is regarded as an
appropriate function for conventional
technology.

The Satellite Autonomy Generic Expert
System (SAGES) architecture, developed by
Rockwell, is based upon the definition of four
intelligent agents, corresponding to phases of
the mission operation cycle, including
planning, scheduling, execution, and analysis
(providing feedback into the planning phase;
Raslavicius et al, 1989). A SAGES prototype
has been developed for a “typical”
surveillance satellite.

The Boeing Aerospace Autonomous Power

System (APS) testbed has been assembled for
use in developing improved control techniques
for aerospace electrical power systems (Spier
and Liffring, 1989). The main emphasis of
APS is the development of a programming
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environment to properly control the
concurrent execution of multiple autonomous
algorithms coupled with continuous input and
output data flow. Expert system functions
include fault diagnosis and recovery, and
battery charge control. The expert systems use
event-driven processing within a blackboard
environment.

The European Space Agency (ESA) Standard
Generic Approach to Spacecraft Autonomy
and Automation (SGASAA), is a hierarchical
model which aims to devolve decision-making
to the lowest possible level (Pidgeon et al,
1992). To this end, it is a distributed onboard
architecture, with each payload and subsystem
having a certain degree of "intelligence", in
addition to an Onboard Mission Manager
(OBMM) responsible for the control of the
spacecraft as a whole. Separate subsystem
managers are intended to handle their own
failures and report the results of their
diagnoses via LAN to the OBMM, along with
a proposed recovery action. The OBMM can
authorise the proposed recovery, or block it if
the failure is caused by a failure elsewhere.
SACV (ibid) is an investigation of the
SGASAA concept involving the
implementation of a fully autonomous
spacecraft based upon EURECA.

SICON, built by LISP Machine Inc, is a
simplified prototype system for satellite
intelligent control, concentrating upon the
electrical power system (Leinweber, 1987).
The SICON prototype deals with load
distribution and switching, solar array
orientation, power system verification and
checkout, fault diagnosis, trend analysis,
contingency management, battery charge and
reconditioning-cycle optimisation, and fuel
cell monitoring and control. Leinweber notes
that there are a number of SSF processes and
subsystems that are amenable to real-time
process control, including the electrical power
system, attitude and orbital control system,
environmental and life support system,

‘propulsion system, monitoring of docked

vehicles, manufacturing process control, and
ground communications and network control.
Such real-time onboard applications require
particular expert system features, including
high-speed context-sensitive rule activation,
efficient memory recycling, acceptance of



interactive commands without suspending
execution, and communication between
multiple expert systems in order to provide
redundancy.

The Space Station Freedom (SSF), will
require an extensive data processing support
environment. The communications and
information processing backbone of the SSF is
the Data Management System (DMS). The
DMS has the dual role of providing hardware
resources and software services which support
data processing and communications needs of
the system, its elements, and payloads
(Erickson, 1987). It also functions as an
integrating entity, providing a common
operating environment and human-machine
interface for the operation and control of
orbiting SSF systems and payloads by both the
crew and ground operators. The DMS
provides signal conditioning, and timing
synchronisation of data required for
interpreting time-critical information and
results between expert systems, knowledge-
based systems, and robotics elements
distributed throughout the SSF environment.
Woods (1992) notes that the DMS may use
artificial intelligence techniques for fault
detection, isolation, and recovery (FDIR) on
DMS components. An Integrated Systems
Executive (ISE) will provide overall software
scheduling and control for all other systems,
experiments, and elements. Low level
software modules will take care of time
critical control loops and fault recognition.
Development projects are currently underway
in a number of SSF expert system
applications.

A Methodology for Autonomous Spacecraft
Development

In the ongoing development of autonomous
spacecraft, devolution of decision-making to
the lowest possible level, and the
modularisation and distribution of
functionality, are prominent trends. These
trends, driven by the particular requirements
of real time autonomous agency, have been
most fully developed in the context of mobile
robotics research, and are captured most
strongly by behavioural approaches to
autonomous systems design. Behavioural
approaches to mobile robotics have also
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demonstrated more fundamental benefits in
addressing the problems of circumspection
and inference thrashing that have plagued
deliberative robot control systems. There is
therefore considerable potential for
behavioural approaches to contribute to the
increased automation of space systems.
Toward this end, this paper proposes a
methodology for autonomous spacecraft
development which draws from both
behavioural approaches to mobile robotics and
an ESTEC (European Space Agency's
technological centre) methodology for space
automation and robotics. While behaviour-
based robots have been suggested for
planetary surface exploration (Brooks and
Flynn, 1989), t